Spaces:
Sleeping
Sleeping
# -*- coding: utf-8 -*- | |
# %%capture | |
# #Use capture to not show the output of installing the libraries! | |
import gradio as gr | |
import requests | |
import torch | |
import torch.nn as nn | |
from PIL import Image | |
from torchvision.models import resnet50 | |
from torchvision.transforms import functional as F | |
import numpy as np | |
import tensorflow as tf | |
from transformers import pipeline | |
# load the model from the Hugging Face Model Hub | |
model = pipeline('image-classification', model='image_classification/densenet') | |
#model = tf.keras.models.load_model('/content/drive/MyDrive/project_image_2023_NO/saved_models/saved_model/densenet') | |
#labels = ['Healthy', 'Patient'] | |
labels = {0: 'healthy', 1: 'patient'} | |
def classify_image(inp): | |
inp = inp.reshape((-1, 224, 224, 3)) | |
inp = tf.keras.applications.densenet.preprocess_input(inp) | |
prediction = model.predict(inp) | |
confidences = {labels[i]: float(prediction[0][i]) for i in range(2)} | |
return confidences | |
gr.Interface(fn=classify_image, | |
inputs=gr.Image(shape=(224, 224)), | |
outputs=gr.Label(num_top_classes = 2), | |
title="Demo", | |
description="Here's a sample image classification. Enjoy!", | |
examples=[['example_1.png']] | |
).launch(share = True) |