NikhilJoson commited on
Commit
6a4771c
1 Parent(s): 8d16ec9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +104 -4
app.py CHANGED
@@ -1,7 +1,107 @@
 
 
1
  import gradio as gr
 
 
 
2
 
3
- def greet(name):
4
- return "Hello " + name + "!!"
 
 
 
 
5
 
6
- demo = gr.Interface(fn=greet, inputs="text", outputs="text")
7
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import spaces
3
  import gradio as gr
4
+ from diffusers import FluxInpaintPipeline
5
+ import random
6
+ import numpy as np
7
 
8
+ MARKDOWN = """
9
+ # FLUX.1 Inpainting 🎨
10
+ Shoutout to [Black Forest Labs](https://huggingface.co/black-forest-labs) team for
11
+ creating this amazing model, and a big thanks to [Gothos](https://github.com/Gothos)
12
+ for taking it to the next level by enabling inpainting with the FLUX.
13
+ """
14
 
15
+ MAX_SEED = np.iinfo(np.int32).max
16
+ DEVICE = "cuda" #if torch.cuda.is_available() else "cpu"
17
+
18
+ pipe = FluxInpaintPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=torch.bfloat16).to(DEVICE)
19
+
20
+ @spaces.GPU()
21
+ def process(input_image_editor, input_text, strength, seed, randomize_seed, num_inference_steps, guidance_scale=3.5, progress=gr.Progress(track_tqdm=True)):
22
+ if not input_text:
23
+ raise gr.Error("Please enter a text prompt.")
24
+
25
+ image = input_image_editor['background']
26
+
27
+ if not image:
28
+ raise gr.Error("Please upload an image.")
29
+
30
+ width, height = image.size
31
+
32
+ if randomize_seed:
33
+ seed = random.randint(0, MAX_SEED)
34
+
35
+ generator = torch.Generator(device=DEVICE).manual_seed(seed)
36
+
37
+ result = pipe(prompt=input_text, image=image, mask_image=mask_image, width=width, height=height,
38
+ strength=strength, num_inference_steps=num_inference_steps, generator=generator,
39
+ guidance_scale=guidance_scale).images[0]
40
+
41
+ return result, mask_image, seed
42
+
43
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
44
+ gr.Markdown(MARKDOWN)
45
+ with gr.Row():
46
+ with gr.Column(scale=1):
47
+ input_image_component = gr.ImageEditor(
48
+ label='Image',
49
+ type='pil',
50
+ sources=["upload", "webcam"],
51
+ image_mode='RGB',
52
+ layers=False,
53
+ brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"))
54
+ input_text_component = gr.Text(
55
+ label="Prompt",
56
+ show_label=False,
57
+ max_lines=1,
58
+ placeholder="Enter your prompt",
59
+ container=False,
60
+ )
61
+ with gr.Accordion("Advanced Settings", open=False):
62
+ strength_slider = gr.Slider(
63
+ minimum=0.0,
64
+ maximum=1.0,
65
+ value=0.7,
66
+ step=0.01,
67
+ label="Strength"
68
+ )
69
+ num_inference_steps = gr.Slider(
70
+ minimum=1,
71
+ maximum=100,
72
+ value=30,
73
+ step=1,
74
+ label="Number of inference steps"
75
+ )
76
+ guidance_scale = gr.Slider(
77
+ label="Guidance Scale",
78
+ minimum=1,
79
+ maximum=15,
80
+ step=0.1,
81
+ value=3.5,
82
+ )
83
+ seed_number = gr.Number(
84
+ label="Seed",
85
+ value=42,
86
+ precision=0
87
+ )
88
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
89
+ with gr.Accordion("Upload a mask", open=False):
90
+ uploaded_mask_component = gr.Image(label="Already made mask (black pixels will be preserved, white pixels will be redrawn)", sources=["upload"], type="pil")
91
+ submit_button_component = gr.Button(
92
+ value='Inpaint', variant='primary')
93
+ with gr.Column(scale=1):
94
+ output_image_component = gr.Image(
95
+ type='pil', image_mode='RGB', label='Generated Image')
96
+ output_mask_component = gr.Image(
97
+ type='pil', image_mode='RGB', label='Generated Mask')
98
+ with gr.Accordion("Debug Info", open=False):
99
+ output_seed = gr.Number(label="Used Seed")
100
+
101
+ submit_button_component.click(
102
+ fn=process,
103
+ inputs=[input_image_component, input_text_component, strength_slider, seed_number, randomize_seed, num_inference_steps, guidance_scale],
104
+ outputs=[output_image_component, output_mask_component, output_seed]
105
+ )
106
+
107
+ demo.launch(debug=False, show_error=True)