Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -65,47 +65,46 @@ def load_and_concat_data():
|
|
65 |
for file in csv_files:
|
66 |
try:
|
67 |
file_content = api.hf_hub_download(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", filename=file, repo_type="dataset", token=HF_TOKEN)
|
68 |
-
|
69 |
-
# Use PyArrow's CSV reading capabilities
|
70 |
-
read_options = csv.ReadOptions(use_threads=True)
|
71 |
-
parse_options = csv.ParseOptions(delimiter=',') # Adjust delimiter if needed
|
72 |
-
convert_options = csv.ConvertOptions(
|
73 |
-
column_types={
|
74 |
-
'date_posted': pa.timestamp('s'),
|
75 |
-
'is_remote': pa.bool_()
|
76 |
-
},
|
77 |
-
strings_can_be_null=True
|
78 |
-
)
|
79 |
-
|
80 |
-
table = csv.read_csv(file_content, read_options=read_options, parse_options=parse_options, convert_options=convert_options)
|
81 |
-
df = table.to_pandas()
|
82 |
-
|
83 |
-
# Perform data cleaning and processing
|
84 |
-
df['date_posted'] = pd.to_datetime(df['date_posted'], errors='coerce')
|
85 |
-
df = df.dropna(subset=['date_posted'])
|
86 |
-
df = df[df['date_posted'].dt.year == 2024]
|
87 |
-
df['title'] = df['title'].str.lower()
|
88 |
-
df['company'] = df['company'].str.lower()
|
89 |
-
|
90 |
-
def clean_location(location):
|
91 |
-
if pd.isna(location):
|
92 |
-
return location
|
93 |
-
location = str(location).lower()
|
94 |
-
return re.sub(r',\s*(us|usa)$', '', location)
|
95 |
-
|
96 |
-
df['location'] = df['location'].apply(clean_location)
|
97 |
-
|
98 |
all_data.append(df)
|
99 |
-
except Exception
|
100 |
-
|
101 |
-
continue
|
102 |
|
103 |
if not all_data:
|
104 |
return pd.DataFrame()
|
105 |
|
106 |
concatenated_df = pd.concat(all_data, ignore_index=True)
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
109 |
return filtered_df
|
110 |
|
111 |
@st.cache_data()
|
|
|
65 |
for file in csv_files:
|
66 |
try:
|
67 |
file_content = api.hf_hub_download(repo_id=f"{HF_USERNAME}/{DATASET_NAME}", filename=file, repo_type="dataset", token=HF_TOKEN)
|
68 |
+
df = pd.read_csv(file_content, engine='pyarrow')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
all_data.append(df)
|
70 |
+
except Exception:
|
71 |
+
pass # Silently skip files that can't be processed
|
|
|
72 |
|
73 |
if not all_data:
|
74 |
return pd.DataFrame()
|
75 |
|
76 |
concatenated_df = pd.concat(all_data, ignore_index=True)
|
77 |
+
|
78 |
+
columns_to_keep = [
|
79 |
+
'site', 'job_url', 'title', 'company', 'location',
|
80 |
+
'job_type', 'date_posted', 'is_remote', 'company_url'
|
81 |
+
]
|
82 |
+
filtered_df = concatenated_df[columns_to_keep].reset_index(drop=True)
|
83 |
+
filtered_df['date_posted'] = pd.to_datetime(filtered_df['date_posted'], errors='coerce')
|
84 |
+
|
85 |
+
# Drop duplicates and rows with NaT in date_posted
|
86 |
+
filtered_df = filtered_df.drop_duplicates().dropna(subset=['date_posted'])
|
87 |
+
#filtering based on data in 2024
|
88 |
+
filtered_df = filtered_df[filtered_df['date_posted'].dt.year==2024]
|
89 |
+
# Convert titles and company name to lowercase
|
90 |
+
filtered_df['title'] = filtered_df['title'].str.lower()
|
91 |
+
filtered_df['company'] = filtered_df['company'].str.lower()
|
92 |
+
|
93 |
+
# Function to clean the location
|
94 |
+
def clean_location(location):
|
95 |
+
if pd.isna(location):
|
96 |
+
return location # Return NaN as is
|
97 |
+
# Convert to lowercase
|
98 |
+
location = location.lower()
|
99 |
+
# Remove ', us' or ', usa' from the end using regex
|
100 |
+
location = re.sub(r',\s*(us|usa)$', '', location)
|
101 |
+
return location
|
102 |
+
|
103 |
+
# Clean the location in place
|
104 |
+
filtered_df['location'] = filtered_df['location'].apply(clean_location)
|
105 |
+
#added new line to drop duplciate records
|
106 |
+
filtered_df = filtered_df.drop_duplicates()
|
107 |
+
|
108 |
return filtered_df
|
109 |
|
110 |
@st.cache_data()
|