import streamlit as st import pandas as pd import numpy as np import plotly.express as px st.set_page_config(layout="wide") import streamlit as st import pandas as pd import matplotlib.pyplot as plt import streamlit as st import pandas as pd import matplotlib.pyplot as plt import streamlit as st import pandas as pd import matplotlib.pyplot as plt import streamlit as st import pandas as pd import plotly.express as px import plotly.graph_objects as go st.markdown( """ """, unsafe_allow_html=True ) margins_css = """ """ st.markdown(margins_css, unsafe_allow_html=True) # Sample data for demonstration purposes models = ['SSD300', 'SSD512', 'DETR'] pruning_methods = ['VIB Pruning','Transfer Pruning'] datasets = ['VOC','SPARK'] hyperparameters = { 'SSD300': {'Transfer Pruning': [('SSD300-ResNet50', '-', '-', 120), ('SSD300-ITPCC-A', '-', '-', 120), ('SSD300-ITPCC-B', '-', '-', 120), ('SSD300-ITPCC-C', '-', '-', 120)], 'VIB Pruning': [('SSD300-ResNet50', '-', '-', 120), ('SSD300-VIB-v1', "0.0001", 240, 100), ('SSD300-VIB-v2', "0.0002", 240,100)]}, 'SSD512': {'Transfer Pruning': [('SSD512-ResNet50', '-', '-', 120), ('SSD512-ITPCC-A', '-', '-', 120), ('SSD512-ITPCC-B', '-', '-', 120), ('SSD512-ITPCC-C', '-', '-', 120)], 'VIB Pruning': [('SSD512-ResNet50', '-', '-', 120),('SSD512-VIB-v1', "0.0003", 200, 100)]}, 'DETR': {'SPARK': [("DETR-baseline", "-", "-","-", 20), ("DETR-SPARK-A", "-","-", 30, 40), ("DETR-SPARK-B", "-","-", 30, 40)], 'VOC': [("DETR-baseline", "-", "-","-", 130), ("DETR-VOC-A", "0.0001","0.00001", 80, 200), ("DETR-VOC-B", "0.00005","0.0001", 80, 200)]}, } results_data = { 'SSD300': { 'VIB Pruning':{'model':['SSD300-ResNet50','SSD300-VIB-v1','SSD300-VIB-v2'],'map': ["77.79", "78.71", "77.41"], 'flops': ["11.1", "5.04", "3.49"],'flopsd':['0.0%','54.55%','68.54%'], 'params': ["49.2", "19.84", "11.18"],'paramsd':['0.0%','59.68%','77.28%'],}, 'Transfer Pruning':{'model':["SSD300-ResNet50",'SSD300-ITPCC-A','SSD300-ITPCC-B','SSD300-ITPCC-C'],'map': ["77.79", "77.86" , "77.06", "75.08"], 'flops': ["11.1", "6.85", "5.08", "3.38"],'flopsd':['0.0%','38.2%','54.2%',"69.5%"], 'params': ["49.2", "32.5", "25.7", "19.4"],'paramsd':['0.0%','33.94%','47.77%',"60.5%"]}, }, 'SSD512': { 'VIB Pruning':{'model':["SSD512-ResNet50",'SSD512-VIB-v1'],'map': ["80.9","81.43"], 'flops': ["46.24", "9.73"],'flopsd':['0.0%','78.94%'], 'params': ["58.52","27.2"],'paramsd':['0.0%','53.42%'],}, 'Transfer Pruning':{'model':["SSD512-ResNet50",'SSD512-ITPCC-A','SSD512-ITPCC-B','SSD512-ITPCC-C'],'map': ["80.9","81.05" , "80.45", "78.82"], 'flops': ["46.2", "31.42", "25.6", "20.1"],'flopsd':['0.0%','31.9%','44.6%',"56.5%"], 'params': ["58.5", "41.8", "35.0", "28.7"],'paramsd':['0.0%','28.5%','40.17%',"50.1%"],}, }, 'DETR': {'SPARK':{'model':["DETR-baseline",'DETR-SPARK-A','DETR-SPARK-B'],'map': ["96.77", "94.5", "95.18"], 'flops': ["85", "56", "58"],'flopsd':['0.0%','34.1%','31.7%'], 'params': ["41.2", "23.3", "26.6"],'paramsd':['0.0%','47.3%','45.4%'],}, 'VOC':{'model':["DETR-baseline",'DETR-VOC-A','DETR-VOC-B'],'map': ["79.34", "77.2", "78.0"], 'flops': ["85", "55", "60"],'flopsd':['0.0%','35.29%','29.41%'], 'params': ["41.2", "21.71", "22.47"],'paramsd':['0.0%','42.65%','35.5%'],}}, } # Title of the research st.markdown('