from fastai.vision.all import * import gradio as gr import gradio as gr from fastai.vision.all import * import skimage learn = load_learner('export.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred,pred_idx,probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Create and launch the Gradio interface title = "Pet Breed Classifier" examples = ['beagle.jpeg'] description = "A pet breed classifier trained on the Oxford Pets dataset with fastai. Created as a demo for Gradio and HuggingFace Spaces." gr.Interface(fn=predict, inputs="image", outputs="label", title=title, description=description, examples=examples).launch(share=True)