Spaces:
Runtime error
Runtime error
File size: 166,955 Bytes
81af296 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import minsearch\n",
"from groq import Groq\n",
"from mistralai import Mistral\n",
"from dotenv import load_dotenv\n",
"import os"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Loading Environment Variables"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"True"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"load_dotenv()\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"# Access the API keys\n",
"mistral_api_key = os.getenv(\"MISTRAL_API_KEY\")\n",
"groq_api_key = os.getenv(\"GROQ_API_KEY\")"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"client = Groq(api_key=groq_api_key)\n",
"client_mistral=Mistral(api_key=mistral_api_key)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Data Loading"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"df=pd.read_csv(\"../dataset/data.csv\")"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Question_ID</th>\n",
" <th>Questions</th>\n",
" <th>Answers</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1590140</td>\n",
" <td>What does it mean to have a mental illness?</td>\n",
" <td>Mental illnesses are health conditions that di...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2110618</td>\n",
" <td>Who does mental illness affect?</td>\n",
" <td>It is estimated that mental illness affects 1 ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>6361820</td>\n",
" <td>What causes mental illness?</td>\n",
" <td>It is estimated that mental illness affects 1 ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>9434130</td>\n",
" <td>What are some of the warning signs of mental i...</td>\n",
" <td>Symptoms of mental health disorders vary depen...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>7657263</td>\n",
" <td>Can people with mental illness recover?</td>\n",
" <td>When healing from mental illness, early identi...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>1619387</td>\n",
" <td>What should I do if I know someone who appears...</td>\n",
" <td>Although this website cannot substitute for pr...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>1030153</td>\n",
" <td>How can I find a mental health professional fo...</td>\n",
" <td>Feeling comfortable with the professional you ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>8022026</td>\n",
" <td>What treatment options are available?</td>\n",
" <td>Just as there are different types of medicatio...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>1155199</td>\n",
" <td>If I become involved in treatment, what do I n...</td>\n",
" <td>Since beginning treatment is a big step for in...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>7760466</td>\n",
" <td>What is the difference between mental health p...</td>\n",
" <td>There are many types of mental health professi...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" Question_ID Questions \\\n",
"0 1590140 What does it mean to have a mental illness? \n",
"1 2110618 Who does mental illness affect? \n",
"2 6361820 What causes mental illness? \n",
"3 9434130 What are some of the warning signs of mental i... \n",
"4 7657263 Can people with mental illness recover? \n",
"5 1619387 What should I do if I know someone who appears... \n",
"6 1030153 How can I find a mental health professional fo... \n",
"7 8022026 What treatment options are available? \n",
"8 1155199 If I become involved in treatment, what do I n... \n",
"9 7760466 What is the difference between mental health p... \n",
"\n",
" Answers \n",
"0 Mental illnesses are health conditions that di... \n",
"1 It is estimated that mental illness affects 1 ... \n",
"2 It is estimated that mental illness affects 1 ... \n",
"3 Symptoms of mental health disorders vary depen... \n",
"4 When healing from mental illness, early identi... \n",
"5 Although this website cannot substitute for pr... \n",
"6 Feeling comfortable with the professional you ... \n",
"7 Just as there are different types of medicatio... \n",
"8 Since beginning treatment is a big step for in... \n",
"9 There are many types of mental health professi... "
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head(10)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"<class 'pandas.core.frame.DataFrame'>\n",
"RangeIndex: 98 entries, 0 to 97\n",
"Data columns (total 3 columns):\n",
" # Column Non-Null Count Dtype \n",
"--- ------ -------------- ----- \n",
" 0 Question_ID 98 non-null int64 \n",
" 1 Questions 98 non-null object\n",
" 2 Answers 98 non-null object\n",
"dtypes: int64(1), object(2)\n",
"memory usage: 2.4+ KB\n"
]
}
],
"source": [
"df.info()"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"documents=df.to_dict('records')"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'Question_ID': 1590140,\n",
" 'Questions': 'What does it mean to have a mental illness?',\n",
" 'Answers': 'Mental illnesses are health conditions that disrupt a person’s thoughts, emotions, relationships, and daily functioning. They are associated with distress and diminished capacity to engage in the ordinary activities of daily life.\\nMental illnesses fall along a continuum of severity: some are fairly mild and only interfere with some aspects of life, such as certain phobias. On the other end of the spectrum lie serious mental illnesses, which result in major functional impairment and interference with daily life. These include such disorders as major depression, schizophrenia, and bipolar disorder, and may require that the person receives care in a hospital.\\nIt is important to know that mental illnesses are medical conditions that have nothing to do with a person’s character, intelligence, or willpower. Just as diabetes is a disorder of the pancreas, mental illness is a medical condition due to the brain’s biology.\\nSimilarly to how one would treat diabetes with medication and insulin, mental illness is treatable with a combination of medication and social support. These treatments are highly effective, with 70-90 percent of individuals receiving treatment experiencing a reduction in symptoms and an improved quality of life. With the proper treatment, it is very possible for a person with mental illness to be independent and successful.'}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents[0]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Indexing the data Using Minsearch"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
" % Total % Received % Xferd Average Speed Time Time Time Current\n",
" Dload Upload Total Spent Left Speed\n",
"\n",
" 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0\n",
"100 3832 100 3832 0 0 4800 0 --:--:-- --:--:-- --:--:-- 4838\n",
"100 3832 100 3832 0 0 4785 0 --:--:-- --:--:-- --:--:-- 4820\n"
]
}
],
"source": [
"!curl -O https://raw.githubusercontent.com/DataTalksClub/llm-zoomcamp/main/01-intro/minsearch.py\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>Question_ID</th>\n",
" <th>Questions</th>\n",
" <th>Answers</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1590140</td>\n",
" <td>What does it mean to have a mental illness?</td>\n",
" <td>Mental illnesses are health conditions that di...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>2110618</td>\n",
" <td>Who does mental illness affect?</td>\n",
" <td>It is estimated that mental illness affects 1 ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>6361820</td>\n",
" <td>What causes mental illness?</td>\n",
" <td>It is estimated that mental illness affects 1 ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>9434130</td>\n",
" <td>What are some of the warning signs of mental i...</td>\n",
" <td>Symptoms of mental health disorders vary depen...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>7657263</td>\n",
" <td>Can people with mental illness recover?</td>\n",
" <td>When healing from mental illness, early identi...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>...</th>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" <td>...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>93</th>\n",
" <td>4373204</td>\n",
" <td>How do I know if I'm drinking too much?</td>\n",
" <td>Sorting out if you are drinking too much can b...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>94</th>\n",
" <td>7807643</td>\n",
" <td>If cannabis is dangerous, why are we legalizin...</td>\n",
" <td>Cannabis smoke, for example, contains cancer-c...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>95</th>\n",
" <td>4352464</td>\n",
" <td>How can I convince my kids not to use drugs?</td>\n",
" <td>You can't. But you can influence their capacit...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>96</th>\n",
" <td>6521784</td>\n",
" <td>What is the legal status (and evidence) of CBD...</td>\n",
" <td>Cannabidiol or CBD is a naturally occurring co...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>97</th>\n",
" <td>3221856</td>\n",
" <td>What is the evidence on vaping?</td>\n",
" <td>\"Vaping\" is the term for using a device where ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"<p>98 rows × 3 columns</p>\n",
"</div>"
],
"text/plain": [
" Question_ID Questions \\\n",
"0 1590140 What does it mean to have a mental illness? \n",
"1 2110618 Who does mental illness affect? \n",
"2 6361820 What causes mental illness? \n",
"3 9434130 What are some of the warning signs of mental i... \n",
"4 7657263 Can people with mental illness recover? \n",
".. ... ... \n",
"93 4373204 How do I know if I'm drinking too much? \n",
"94 7807643 If cannabis is dangerous, why are we legalizin... \n",
"95 4352464 How can I convince my kids not to use drugs? \n",
"96 6521784 What is the legal status (and evidence) of CBD... \n",
"97 3221856 What is the evidence on vaping? \n",
"\n",
" Answers \n",
"0 Mental illnesses are health conditions that di... \n",
"1 It is estimated that mental illness affects 1 ... \n",
"2 It is estimated that mental illness affects 1 ... \n",
"3 Symptoms of mental health disorders vary depen... \n",
"4 When healing from mental illness, early identi... \n",
".. ... \n",
"93 Sorting out if you are drinking too much can b... \n",
"94 Cannabis smoke, for example, contains cancer-c... \n",
"95 You can't. But you can influence their capacit... \n",
"96 Cannabidiol or CBD is a naturally occurring co... \n",
"97 \"Vaping\" is the term for using a device where ... \n",
"\n",
"[98 rows x 3 columns]"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [],
"source": [
"df = df.rename(columns={'Question_ID': 'question_id', 'Questions': 'questions','Answers':'answers'})\n"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['question_id', 'questions', 'answers'], dtype='object')"
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"documents=df.to_dict('records')"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'question_id': 1590140,\n",
" 'questions': 'What does it mean to have a mental illness?',\n",
" 'answers': 'Mental illnesses are health conditions that disrupt a person’s thoughts, emotions, relationships, and daily functioning. They are associated with distress and diminished capacity to engage in the ordinary activities of daily life.\\nMental illnesses fall along a continuum of severity: some are fairly mild and only interfere with some aspects of life, such as certain phobias. On the other end of the spectrum lie serious mental illnesses, which result in major functional impairment and interference with daily life. These include such disorders as major depression, schizophrenia, and bipolar disorder, and may require that the person receives care in a hospital.\\nIt is important to know that mental illnesses are medical conditions that have nothing to do with a person’s character, intelligence, or willpower. Just as diabetes is a disorder of the pancreas, mental illness is a medical condition due to the brain’s biology.\\nSimilarly to how one would treat diabetes with medication and insulin, mental illness is treatable with a combination of medication and social support. These treatments are highly effective, with 70-90 percent of individuals receiving treatment experiencing a reduction in symptoms and an improved quality of life. With the proper treatment, it is very possible for a person with mental illness to be independent and successful.'}"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"documents[0]"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"index=minsearch.Index(\n",
" text_fields=['questions', 'answers'],\n",
" keyword_fields=[]\n",
")"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"<minsearch.Index at 0x1dd02704e80>"
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"index.fit(documents)"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"query=\"What should I eat if I lost a friend\""
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"[{'question_id': 4759773,\n",
" 'questions': 'What should I do if I’m worried about a friend or relative?',\n",
" 'answers': 'This may depend on your relationship with them. Gently encouraging someone to seek appropriate support would be helpful to start with.'},\n",
" {'question_id': 3388962,\n",
" 'questions': 'What should I know before starting a new medication?',\n",
" 'answers': 'The best source of information regarding medications is the physician prescribing them. He or she should be able to answer questions such as: 1. What is the medication supposed to do? 2. When should it begin to take effect, and how will I know when it is effective? 3. How is the medication taken and for how long? What food, drinks, other medicines, and activities should be avoided while taking this medication? 4. What are the side effects and what should be done if they occur? 5. What do I do if a dose is missed? 6. Is there any written information available about this medication? 7. Are there other medications that might be appropriate? 8. If so, why do you prefer the one you have chosen? 9. How do you monitor medications and what symptoms indicate that they should be raised, lowered, or changed? 10. All medications should be taken as directed. Most medications for mental illnesses do not work when taken irregularly, and extra doses can cause severe, sometimes dangerous side effects. Many psychiatric medications begin to have a beneficial effect only after they have been taken for several weeks.'},\n",
" {'question_id': 1619387,\n",
" 'questions': 'What should I do if I know someone who appears to have the symptoms of a mental disorder?',\n",
" 'answers': \"Although this website cannot substitute for professional advice, we encourage those with symptoms to talk to their friends and family members and seek the counsel of a mental health professional. The sooner the mental health condition is identified and treated, the sooner they can get on the path to recovery.\\nIf you know someone who is having problems, don't assume that the issue will resolve itself. Let them know that you care about them, and that there are treatment options available that will help them heal. Speak with a mental health professional or counselor if you think your friend or family member is experiencing the symptoms of a mental health condition. If the affected loved one knows that you support them, they will be more likely to seek out help.\"},\n",
" {'question_id': 8690253,\n",
" 'questions': 'What do I do if I’m worried about my mental health?',\n",
" 'answers': 'The most important thing is to talk to someone you trust. This might be a friend, colleague, family member, or GP. In addition to talking to someone, it may be useful to find out more information about what you are experiencing. These things may help to get some perspective on what you are experiencing, and be the start of getting help.'},\n",
" {'question_id': 1259439,\n",
" 'questions': 'If I become involved in treatment what do I need to know?',\n",
" 'answers': 'Beginning treatment is a big step for individuals and families and can be very overwhelming. It is important to continue involvement in the treatment process as much as possible. Some questions you will need to have answered include:\\nWhat is known about the cause of this particular illness?\\nAre there other diagnoses where these symptoms are common?\\nDo you normally include a physical or neurological examination?\\nAre there any additional tests or exams that you would recommend at this point?\\nWould you advise an independent opinion from another psychiatrist at this point?\\nWhat program of treatment is the most helpful with this diagnosis?\\nWill this program involve services by other specialists? If so, who will be responsible for coordinating these services?\\nWhat do you see as the family’s role in this program of treatment?\\nHow much access will the family have to the individuals who are providing the treatment?\\nWhat medications are generally used with this diagnosis? What is the biological effect of this medication, and what do you expect it to accomplish? What are the risks associated with the medication? How soon will we be able to tell if the medication is effective, and how will we know?\\nHow much experience do you have in treating individuals with this illness?\\nWhat can I do to help you in the treatment?'},\n",
" {'question_id': 2973656,\n",
" 'questions': 'How do I know if I’m unwell?',\n",
" 'answers': 'If your beliefs , thoughts , feelings or behaviours have a significant impact on your ability to function in what might be considered a normal or ordinary way, it would be important to seek help.'},\n",
" {'question_id': 9100298,\n",
" 'questions': 'How can I maintain social connections? What if I feel lonely?',\n",
" 'answers': \"A lot of people are alone right now, but we don't have to be lonely. We're all in this together. \\n While you may be physically separated from friends, family members, and other loved ones, it has never been more important to maintain those social connections. Social connections are an opportunity to seek and share support, talk through difficult feelings, share a laugh, keep up-to-date with loved ones, and help each other cope. This pandemic is a lot for one person to deal with on their own. While measures like physical distancing and self-isolation are necessary to slow the spread of the virus, the physical separation can amplify a lot of challenging emotions like loneliness and fear. \\n Think about the different ways to connect that are most meaningful for you. For example, you might prefer a video chat over a phone call, or you might prefer to text throughout the day rather than one set time for a video call. Then, work with your social networks to make a plan. You might video chat with your close friends in the evening and phone a family member once a week. \\n Remember to be mindful of people who may not be online. Check in by phone and ask how you can help. \\n The quality of your social connections matter. Mindlessly scrolling through social media and liking a few posts usually doesn't build strong social connections. Make sure you focus on strategies that actually make you feel included and connected. If your current strategies don't help you feel connected, problem-solve to see if you can find a solution. \\n Everyone feels lonely at times—maybe you recently moved to a new city, are changing your circle of friends, lost someone important in your life, or lost your job and also lost important social connections with coworkers. Other people may have physical connections to others but may feel like their emotional or social needs aren't met. Measures like social distancing or self-isolation can make loneliness feel worse no matter why you feel lonely now. \\n Reach out to the connections you do have. Suggest ways to keep in touch and see if you can set a regular time to connect. People may hesitate to reach out for a lot of different reasons, so don't be afraid to be the one who asks. \\n Look for local community support groups and mutual aid groups on social media. This pandemic is bringing everyone together, so look for opportunities to make new connections. These groups are a great way to share your skills and abilities or seek help and support. \\n Look for specialized support groups. Support groups are moving online, and there are a lot of different support lines to call if you need to talk to someone. To find community services in BC, call or text 211 or visit www.bc211.ca. \\n If you need extra support, you can talk with a psychologist or counsellor for free: \\n You can access a free phone call with a Registered Psychologist though the Covid-19 Psychological Support Service from the BC Psychological Association. Visit www.psychologists.bc.ca/covid-19-resources. \\n You can access free, phone-based, short-term support with a counsellor from a new group called the BC COVID-19 Mental Health Network. Email [email protected] to receive an appointment time. \\n For youth people ages 12-24, you can talk with a counsellor for free through Foundry Virtual. Visit foundrybc.ca/get-support/virtual/. \\n Call the BC Mental Health Support Line at 310-6789. It’s available 24/7. \\n Chat online with a Crisis Center volunteer at www.crisiscentrechat.ca (daily between noon and 1:00am) \\n For older adults: Call the Seniors Distress Line at 604-872-123 \\n For youth and young adults: Chat online with a volunteer at www.YouthinBC.com (daily between noon and 1:00am) \\n For children and youth: Call the Kids Help Phone at 1-800-668-6868 or visit kidshelpphone.ca \\n For tips on managing loneliness, check out the following resources: \\n Coping with Loneliness from the Canadian Mental Health Association: cmha.bc.ca/documents/coping-with-loneliness/ \\n Loneliness and Social Connection issue of Visions Journal at www.heretohelp.bc.ca/visions/loneliness-and-social-connection-vol14 \\n Wellness Module 3: Social Support at www.heretohelp.bc.ca/wellness-module/wellness-module-3-social-support\"},\n",
" {'question_id': 1155199,\n",
" 'questions': 'If I become involved in treatment, what do I need to know?',\n",
" 'answers': 'Since beginning treatment is a big step for individuals and families, it can be very overwhelming. It is important to be as involved and engaged in the treatment process as possible. Some questions you will need to have answered include:\\nWhat is known about the cause of this particular illness?\\nAre there other diagnoses where these symptoms are common?\\nDo you normally include a physical or neurological examination?\\nAre there any additional tests or exams that you would recommend at this point?\\nWould you advise an independent opinion from another psychiatrist at this point?\\nWhat program of treatment is the most helpful with this diagnosis?\\nWill this program involve services by other specialists? If so, who will be responsible for coordinating these services?\\nWhat do you see as the family’s role in this program of treatment?\\nHow much access will the family have to the individuals who are providing the treatment?\\nWhat medications are generally used with this diagnosis?\\nHow much experience do you have in treating individuals with this illness?\\nWhat can I do to help you in the treatment?'},\n",
" {'question_id': 2447683,\n",
" 'questions': 'Cannabis is legally allowed to 19+ but there are doctor groups saying it’s potentially harmful to age 25. Any use or certain use? What’s myth and what’s fact? If I’m a parent, what should I tell my young adult?',\n",
" 'answers': 'Using cannabis has the potential for benefits and harms. Young people use cannabis, like other psychoactive drugs, to feel good, to feel better, to do better or to explore. Trying cannabis out of curiosity, as an experiment, or while socializing with friends, is related to moderate use and lower potential for harm. Using cannabis to cope with daily life, deal with unpleasant feelings, or fit in with a social group has higher potential for harm. This is because dealing with these kinds of issues is associated with frequent and heavier use, less thought about potential harms and little consideration of alternatives for coping such as talking with a parent or trusted adult or physical activity with friends. \\n Evidence suggests that the younger a person is when they start using cannabis and the more often they use, the greater the potential for harms. The legal age to use cannabis in BC is 19. However, our brains do not finish developing until about age 25. Delaying cannabis use until early adulthood may reduce potential harmful effects on the brain. \\n Some young people, especially those with many factors predisposing them to serious and persistent mental health issues, should probably not use cannabis. Cannabis has been associated with an increased risk for psychosis and schizophrenia in this small group of people. Some people with serious mental health issues have also reported that using cannabis has helped them cope with their illness by helping them feel less anxious or stressed. As in most situations, balancing potential benefits and harms of using cannabis will be key for young people who have serious mental health concerns. \\n Mixing drugs, such as cannabis and alcohol, can also increase the possibility of experiencing harms. Intoxication may be more intense and long lasting and the young person may not appreciate how impaired they are. We often suggest, “Not too much, not too often, and only in a safe context” as a simple way to gauge your use of any psychoactive substance. \\n As a parent or caring adult, an open respectful relationship with a young person is one of your best resources and ways to prevent harms from substance use. Letting the youth know they can approach you at any time to talk about cannabis, other substances, or anything else of concern to them, says they matter to you and you are ready to listen and engage in dialogue with them. This is a great place to begin addressing anything that might come the young person’s way in life! \\n The Canadian Institute for Substance Use Research, formerly CARBC, is a member of the BC Partners for Mental Health and Addictions Information. The institute is dedicated to the study of substance use in support of community-wide efforts aimed at providing all people with access to healthier lives, whether using substances or not. For more, visit www.cisur.ca.'},\n",
" {'question_id': 1337085,\n",
" 'questions': 'I have thoughts of suicide, or someone I care about is talking about suicide. What should I do?',\n",
" 'answers': 'If you need to talk to someone or you aren’t sure how to help someone you care about, call 1-800-SUICIDE (1-800-784-2433) at any time. Or type your concern using live chat (like texting online) at www.crisiscentrechat.ca between noon and 1am. They can help you, and they can suggest good local resources. If you’re at risk of harm or think someone else is in danger and you need help right now, call 911. \\n It’s scary to have thoughts of suicide or hear that someone you can care about has thoughts of suicide. Thoughts of suicide don’t mean that someone will end their life, but it’s a sign that they need extra help or support. If you have thoughts of suicide, it’s important to talk with your doctor or mental health service provider. If you’re supporting someone else, encourage them to seek help. \\n Coping With Suicidal Thoughts is a good resource to help you understand and manage difficult feelings. \\n Our info sheet on suicide has information on suicide, helping someone else, and finding help. What is Suicide? is a booklet with audio in plain language for lower literacy readers. \\n The Centre for Suicide Prevention has many resource toolkits on suicide for different audiences, including people serving in the military, young people, teens, older adults, Aboriginal community members, and LGBT community members.'}]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"index.search(query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluating Retrieval"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"df_questions = pd.read_csv('../dataset/ground_truth_data.csv')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>1590140</td>\n",
" <td>How do mental illnesses affect a person's dail...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>1590140</td>\n",
" <td>What are some examples of serious mental illne...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>1590140</td>\n",
" <td>Why is it a misconception to associate mental ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>1590140</td>\n",
" <td>How are mental illnesses treated, and what is ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>1590140</td>\n",
" <td>Can a person with mental illness become indepe...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" id question\n",
"0 1590140 How do mental illnesses affect a person's dail...\n",
"1 1590140 What are some examples of serious mental illne...\n",
"2 1590140 Why is it a misconception to associate mental ...\n",
"3 1590140 How are mental illnesses treated, and what is ...\n",
"4 1590140 Can a person with mental illness become indepe..."
]
},
"execution_count": 21,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_questions.head()"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"ground_truth=df_questions.to_dict('records')"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'id': 1590140,\n",
" 'question': \"How do mental illnesses affect a person's daily functioning and relationships?\"}"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ground_truth[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"def search(query):\n",
" boost = {}\n",
"\n",
" results = index.search(\n",
" query=query,\n",
" filter_dict={},\n",
" boost_dict=boost,\n",
" num_results=10\n",
" )\n",
"\n",
" return results"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"def hit_rate(relevance_total):\n",
" cnt = 0\n",
"\n",
" for line in relevance_total:\n",
" if True in line:\n",
" cnt = cnt + 1\n",
"\n",
" return cnt / len(relevance_total)\n",
"\n",
"def mrr(relevance_total):\n",
" total_score = 0.0\n",
"\n",
" for line in relevance_total:\n",
" for rank in range(len(line)):\n",
" if line[rank] == True:\n",
" total_score = total_score + 1 / (rank + 1)\n",
"\n",
" return total_score / len(relevance_total)\n"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {},
"outputs": [],
"source": [
"def precision(relevance_list):\n",
" \"\"\"\n",
" Precision: Proportion of retrieved documents that are relevant.\n",
" \"\"\"\n",
" relevant_retrieved = sum(relevance_list) # True indicates relevance\n",
" total_retrieved = len(relevance_list) # All retrieved documents\n",
" if total_retrieved == 0:\n",
" return 0.0 # Avoid division by zero\n",
" return relevant_retrieved / total_retrieved"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {},
"outputs": [],
"source": [
"def recall(relevance_list, total_relevant):\n",
" \"\"\"\n",
" Recall: Proportion of relevant documents that are retrieved.\n",
" \"\"\"\n",
" relevant_retrieved = sum(relevance_list) # True indicates relevance\n",
" if total_relevant == 0:\n",
" return 0.0 # Avoid division by zero\n",
" return relevant_retrieved / total_relevant"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"def evaluate(ground_truth, search_function):\n",
" relevance_total = []\n",
" precision_scores = []\n",
" recall_scores = []\n",
"\n",
" for q in tqdm(ground_truth):\n",
" doc_id = q['id']\n",
" \n",
" # Get search results for this query\n",
" results = search_function(q)\n",
" \n",
" # Check if the correct document (matching question_id) is in the results\n",
" relevance = [doc['question_id'] == doc_id for doc in results]\n",
" relevance_total.append(relevance)\n",
" \n",
" # Precision: Fraction of retrieved documents that are relevant\n",
" precision_score = precision(relevance)\n",
" precision_scores.append(precision_score)\n",
" \n",
" # Recall: There is only 1 relevant document per query, so recall is either 1 or 0\n",
" recall_score = recall(relevance, 1)\n",
" recall_scores.append(recall_score)\n",
"\n",
" return {\n",
" 'hit_rate': hit_rate(relevance_total),\n",
" 'mrr': mrr(relevance_total),\n",
" 'precision': sum(precision_scores) / len(precision_scores), # Average precision\n",
" 'recall': sum(recall_scores) / len(recall_scores), # Average recall\n",
" }\n"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"from tqdm.auto import tqdm\n"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a77c76ffd2434de9ac4b888899b38f21",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/plain": [
"{'hit_rate': 0.9180327868852459,\n",
" 'mrr': 0.7107739179460493,\n",
" 'precision': 0.09180327868852516,\n",
" 'recall': 0.9180327868852459}"
]
},
"execution_count": 30,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"evaluate(ground_truth, lambda q: search(q['question']))\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"High Recall, Low Precision: This suggests that the system is finding most of the relevant documents, but it is also retrieving a lot of irrelevant ones. You might want to focus on improving the precision by better tuning your search algorithm (e.g., improving query relevance, adjusting boosts, or filtering irrelevant results)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Looking FOr the Best Parameters"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"from tqdm.auto import tqdm\n",
"from typing import Dict, List, Any\n",
"from itertools import product\n",
"\n",
"def calculate_metrics(relevance_total: List[List[bool]]) -> Dict[str, float]:\n",
" \"\"\"Calculate all retrieval metrics from relevance lists\"\"\"\n",
" \n",
" # Calculate hit rate\n",
" hit_rate = sum(any(line) for line in relevance_total) / len(relevance_total)\n",
" \n",
" # Calculate MRR\n",
" mrr_score = 0.0\n",
" for line in relevance_total:\n",
" for rank, relevant in enumerate(line):\n",
" if relevant:\n",
" mrr_score += 1 / (rank + 1)\n",
" break\n",
" mrr = mrr_score / len(relevance_total)\n",
" \n",
" # Calculate precision and recall for each query\n",
" precision_scores = []\n",
" recall_scores = []\n",
" \n",
" for relevance_list in relevance_total:\n",
" # Precision\n",
" precision = sum(relevance_list) / len(relevance_list) if relevance_list else 0.0\n",
" precision_scores.append(precision)\n",
" \n",
" # Recall (assuming 1 relevant document per query)\n",
" recall = sum(relevance_list) / 1 if sum(relevance_list) > 0 else 0.0\n",
" recall_scores.append(recall)\n",
" \n",
" # Calculate averages\n",
" avg_precision = np.mean(precision_scores)\n",
" avg_recall = np.mean(recall_scores)\n",
" \n",
" # Calculate F1 score\n",
" f1_score = (2 * avg_precision * avg_recall) / (avg_precision + avg_recall) if (avg_precision + avg_recall) > 0 else 0.0\n",
" \n",
" return {\n",
" 'hit_rate': hit_rate,\n",
" 'mrr': mrr,\n",
" 'precision': avg_precision,\n",
" 'recall': avg_recall,\n",
" }\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {},
"outputs": [],
"source": [
"def search_with_params(index, query: str, params: Dict[str, Any]) -> List[Dict]:\n",
" \"\"\"Perform search with specific parameters\"\"\"\n",
" results = index.search(\n",
" query=query,\n",
" filter_dict={},\n",
" boost_dict=params.get('boost', {}),\n",
" num_results=params.get('num_results', 10)\n",
" )\n",
" return results"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {},
"outputs": [],
"source": [
"def evaluate_params(index, ground_truth: List[Dict], params: Dict[str, Any]) -> Dict[str, float]:\n",
" \"\"\"Evaluate a single parameter configuration\"\"\"\n",
" relevance_total = []\n",
" \n",
" for q in tqdm(ground_truth, desc=\"Evaluating configuration\"):\n",
" doc_id = q['id']\n",
" results = search_with_params(index, q['question'], params)\n",
" \n",
" # Check relevance of results\n",
" relevance = [doc['question_id'] == doc_id for doc in results]\n",
" relevance_total.append(relevance)\n",
" \n",
" return calculate_metrics(relevance_total)"
]
},
{
"cell_type": "code",
"execution_count": 55,
"metadata": {},
"outputs": [],
"source": [
"def generate_param_combinations(param_grid: Dict[str, List[Any]]) -> List[Dict[str, Any]]:\n",
" \"\"\"Generate all possible combinations of parameters\"\"\"\n",
" keys = param_grid.keys()\n",
" values = product(*param_grid.values())\n",
" return [dict(zip(keys, v)) for v in values]"
]
},
{
"cell_type": "code",
"execution_count": 56,
"metadata": {},
"outputs": [],
"source": [
"def find_best_params(index, ground_truth: List[Dict], param_grid: Dict[str, List[Any]]) -> Dict:\n",
" \"\"\"Find the best parameters through grid search\"\"\"\n",
" \n",
" # Generate all parameter combinations\n",
" param_combinations = generate_param_combinations(param_grid)\n",
" \n",
" # Store all results\n",
" all_results = []\n",
" best_score = -float('inf')\n",
" best_params = None\n",
" best_metrics = None\n",
" \n",
" # Test each parameter combination\n",
" for params in tqdm(param_combinations, desc=\"Testing parameter combinations\"):\n",
" metrics = evaluate_params(index, ground_truth, params)\n",
" \n",
" # Calculate overall score (average of all metrics)\n",
" score = np.mean([\n",
" metrics['hit_rate'],\n",
" metrics['mrr']\n",
" ])\n",
" \n",
" result = {\n",
" 'params': params,\n",
" 'metrics': metrics,\n",
" 'overall_score': score\n",
" }\n",
" all_results.append(result)\n",
" \n",
" # Update best results if current score is better\n",
" if score > best_score:\n",
" best_score = score\n",
" best_params = params\n",
" best_metrics = metrics\n",
" \n",
" return {\n",
" 'best_params': best_params,\n",
" 'best_metrics': best_metrics,\n",
" 'all_results': all_results\n",
" }"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {},
"outputs": [],
"source": [
"# Example parameter grid\n",
"default_param_grid = {\n",
" 'boost': [\n",
" {'questions': 1.0, 'answers': 0.5},\n",
" {'questions': 2.0, 'answers': 1.0},\n",
" {'questions': 1.0, 'answers': 1.0},\n",
" {'questions': 3.0, 'answers': 0.5},\n",
" ],\n",
" 'num_results': [5, 10, 15, 20]\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 57,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c6e504832cd741769e878efba4afe3c7",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Testing parameter combinations: 0%| | 0/16 [00:01<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d8163a4f3cac4cbcb755ee27a971eeca",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "09ecba28f2154810aa2fa005123cda5e",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c2745c31e22e4d2eb0663541837f8b7a",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0ca4f884eecb4de39c76b96b9f3ac93d",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0d07b21b19e149efaadf7b5bbc7e9bfe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ef7ccb7b76d343bfac61e39894a08328",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8a5ff09ade8f4b59a444efc8733b2efe",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f81e27e89c884d5da0b52718c92dfbf1",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7ab5616c6b31431e9499f0506de35f25",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "c7b6065b88674511a79e9fa6bb40d431",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "9700ff238cf04369b92590bc5b629237",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "e214dfc711144ba396d74c5b0ff63a20",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "f7e499015811446db7fa4f41ce3be24b",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b81c1ae0e641493c9a4da1843da74196",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ccf3edaedc48415b8c64a59a1228636f",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2065e0ce8e674634877840dadbaa0cec",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Evaluating configuration: 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"Best Parameters: {'boost': {'questions': 1.0, 'answers': 1.0}, 'num_results': 20}\n",
"\n",
"Best Metrics:\n",
"hit_rate: 0.9699\n",
"mrr: 0.7146\n",
"precision: 0.0485\n",
"recall: 0.9699\n",
"\n",
"All configurations sorted by performance:\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>boost</th>\n",
" <th>num_results</th>\n",
" <th>metric_hit_rate</th>\n",
" <th>metric_mrr</th>\n",
" <th>metric_precision</th>\n",
" <th>metric_recall</th>\n",
" <th>overall_score</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>11</th>\n",
" <td>{'questions': 1.0, 'answers': 1.0}</td>\n",
" <td>20</td>\n",
" <td>0.969945</td>\n",
" <td>0.714573</td>\n",
" <td>0.048497</td>\n",
" <td>0.969945</td>\n",
" <td>0.842259</td>\n",
" </tr>\n",
" <tr>\n",
" <th>10</th>\n",
" <td>{'questions': 1.0, 'answers': 1.0}</td>\n",
" <td>15</td>\n",
" <td>0.950820</td>\n",
" <td>0.713451</td>\n",
" <td>0.063388</td>\n",
" <td>0.950820</td>\n",
" <td>0.832135</td>\n",
" </tr>\n",
" <tr>\n",
" <th>9</th>\n",
" <td>{'questions': 1.0, 'answers': 1.0}</td>\n",
" <td>10</td>\n",
" <td>0.918033</td>\n",
" <td>0.710774</td>\n",
" <td>0.091803</td>\n",
" <td>0.918033</td>\n",
" <td>0.814403</td>\n",
" </tr>\n",
" <tr>\n",
" <th>8</th>\n",
" <td>{'questions': 1.0, 'answers': 1.0}</td>\n",
" <td>5</td>\n",
" <td>0.855191</td>\n",
" <td>0.702368</td>\n",
" <td>0.171038</td>\n",
" <td>0.855191</td>\n",
" <td>0.778780</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>{'questions': 1.0, 'answers': 0.5}</td>\n",
" <td>20</td>\n",
" <td>0.912568</td>\n",
" <td>0.602561</td>\n",
" <td>0.045628</td>\n",
" <td>0.912568</td>\n",
" <td>0.757565</td>\n",
" </tr>\n",
" <tr>\n",
" <th>7</th>\n",
" <td>{'questions': 2.0, 'answers': 1.0}</td>\n",
" <td>20</td>\n",
" <td>0.912568</td>\n",
" <td>0.602561</td>\n",
" <td>0.045628</td>\n",
" <td>0.912568</td>\n",
" <td>0.757565</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>{'questions': 1.0, 'answers': 0.5}</td>\n",
" <td>15</td>\n",
" <td>0.890710</td>\n",
" <td>0.601329</td>\n",
" <td>0.059381</td>\n",
" <td>0.890710</td>\n",
" <td>0.746020</td>\n",
" </tr>\n",
" <tr>\n",
" <th>6</th>\n",
" <td>{'questions': 2.0, 'answers': 1.0}</td>\n",
" <td>15</td>\n",
" <td>0.890710</td>\n",
" <td>0.601329</td>\n",
" <td>0.059381</td>\n",
" <td>0.890710</td>\n",
" <td>0.746020</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>{'questions': 1.0, 'answers': 0.5}</td>\n",
" <td>10</td>\n",
" <td>0.855191</td>\n",
" <td>0.598455</td>\n",
" <td>0.085519</td>\n",
" <td>0.855191</td>\n",
" <td>0.726823</td>\n",
" </tr>\n",
" <tr>\n",
" <th>5</th>\n",
" <td>{'questions': 2.0, 'answers': 1.0}</td>\n",
" <td>10</td>\n",
" <td>0.855191</td>\n",
" <td>0.598455</td>\n",
" <td>0.085519</td>\n",
" <td>0.855191</td>\n",
" <td>0.726823</td>\n",
" </tr>\n",
" <tr>\n",
" <th>15</th>\n",
" <td>{'questions': 3.0, 'answers': 0.5}</td>\n",
" <td>20</td>\n",
" <td>0.852459</td>\n",
" <td>0.532316</td>\n",
" <td>0.042623</td>\n",
" <td>0.852459</td>\n",
" <td>0.692388</td>\n",
" </tr>\n",
" <tr>\n",
" <th>14</th>\n",
" <td>{'questions': 3.0, 'answers': 0.5}</td>\n",
" <td>15</td>\n",
" <td>0.814208</td>\n",
" <td>0.530218</td>\n",
" <td>0.054281</td>\n",
" <td>0.814208</td>\n",
" <td>0.672213</td>\n",
" </tr>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>{'questions': 1.0, 'answers': 0.5}</td>\n",
" <td>5</td>\n",
" <td>0.756831</td>\n",
" <td>0.584791</td>\n",
" <td>0.151366</td>\n",
" <td>0.756831</td>\n",
" <td>0.670811</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>{'questions': 2.0, 'answers': 1.0}</td>\n",
" <td>5</td>\n",
" <td>0.756831</td>\n",
" <td>0.584791</td>\n",
" <td>0.151366</td>\n",
" <td>0.756831</td>\n",
" <td>0.670811</td>\n",
" </tr>\n",
" <tr>\n",
" <th>13</th>\n",
" <td>{'questions': 3.0, 'answers': 0.5}</td>\n",
" <td>10</td>\n",
" <td>0.751366</td>\n",
" <td>0.525145</td>\n",
" <td>0.075137</td>\n",
" <td>0.751366</td>\n",
" <td>0.638256</td>\n",
" </tr>\n",
" <tr>\n",
" <th>12</th>\n",
" <td>{'questions': 3.0, 'answers': 0.5}</td>\n",
" <td>5</td>\n",
" <td>0.661202</td>\n",
" <td>0.513661</td>\n",
" <td>0.132240</td>\n",
" <td>0.661202</td>\n",
" <td>0.587432</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" boost num_results metric_hit_rate \\\n",
"11 {'questions': 1.0, 'answers': 1.0} 20 0.969945 \n",
"10 {'questions': 1.0, 'answers': 1.0} 15 0.950820 \n",
"9 {'questions': 1.0, 'answers': 1.0} 10 0.918033 \n",
"8 {'questions': 1.0, 'answers': 1.0} 5 0.855191 \n",
"3 {'questions': 1.0, 'answers': 0.5} 20 0.912568 \n",
"7 {'questions': 2.0, 'answers': 1.0} 20 0.912568 \n",
"2 {'questions': 1.0, 'answers': 0.5} 15 0.890710 \n",
"6 {'questions': 2.0, 'answers': 1.0} 15 0.890710 \n",
"1 {'questions': 1.0, 'answers': 0.5} 10 0.855191 \n",
"5 {'questions': 2.0, 'answers': 1.0} 10 0.855191 \n",
"15 {'questions': 3.0, 'answers': 0.5} 20 0.852459 \n",
"14 {'questions': 3.0, 'answers': 0.5} 15 0.814208 \n",
"0 {'questions': 1.0, 'answers': 0.5} 5 0.756831 \n",
"4 {'questions': 2.0, 'answers': 1.0} 5 0.756831 \n",
"13 {'questions': 3.0, 'answers': 0.5} 10 0.751366 \n",
"12 {'questions': 3.0, 'answers': 0.5} 5 0.661202 \n",
"\n",
" metric_mrr metric_precision metric_recall overall_score \n",
"11 0.714573 0.048497 0.969945 0.842259 \n",
"10 0.713451 0.063388 0.950820 0.832135 \n",
"9 0.710774 0.091803 0.918033 0.814403 \n",
"8 0.702368 0.171038 0.855191 0.778780 \n",
"3 0.602561 0.045628 0.912568 0.757565 \n",
"7 0.602561 0.045628 0.912568 0.757565 \n",
"2 0.601329 0.059381 0.890710 0.746020 \n",
"6 0.601329 0.059381 0.890710 0.746020 \n",
"1 0.598455 0.085519 0.855191 0.726823 \n",
"5 0.598455 0.085519 0.855191 0.726823 \n",
"15 0.532316 0.042623 0.852459 0.692388 \n",
"14 0.530218 0.054281 0.814208 0.672213 \n",
"0 0.584791 0.151366 0.756831 0.670811 \n",
"4 0.584791 0.151366 0.756831 0.670811 \n",
"13 0.525145 0.075137 0.751366 0.638256 \n",
"12 0.513661 0.132240 0.661202 0.587432 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"# Run the optimization\n",
"results = find_best_params(index, ground_truth, default_param_grid)\n",
"\n",
"# Print best parameters\n",
"print(\"Best Parameters:\", results['best_params'])\n",
"print(\"\\nBest Metrics:\")\n",
"for metric, value in results['best_metrics'].items():\n",
" print(f\"{metric}: {value:.4f}\")\n",
"\n",
"# Create DataFrame of all results for analysis\n",
"results_df = pd.DataFrame([\n",
" {\n",
" **r['params'],\n",
" **{f\"metric_{k}\": v for k, v in r['metrics'].items()},\n",
" 'overall_score': r['overall_score']\n",
" }\n",
" for r in results['all_results']\n",
"])\n",
"\n",
"# Display results sorted by overall score\n",
"print(\"\\nAll configurations sorted by performance:\")\n",
"display(results_df.sort_values('overall_score', ascending=False))\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rag Flow"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"prompt_template=\"\"\"\n",
"You are an expert mental health assistant specialized in providing detailed and accurate answers based on the given context.\n",
"Answer the QUESTION based on the CONTEXT from our meantal health database.\n",
"Use only the facts from the CONTEXT when answering the QUESTION.\n",
"\n",
"Here is the context:\n",
"\n",
"Context: {context}\n",
"\n",
"Please answer the following question based on the provided context:\n",
"\n",
"Question: {question}\n",
"\n",
"Provide a detailed and informative response. Ensure that your answer is clear, concise, and directly addresses the question while being relevant to the context provided.\n",
"\n",
"Your response should be in plain text and should not include any code blocks or extra formatting.\n",
"\n",
"Answer:\n",
"\"\"\".strip()\n",
"def build_prompt(query, search_results):\n",
" context = \"\"\n",
" \n",
" for doc in search_results:\n",
" context = context.format(**doc) + \"\\n\\n\"\n",
"\n",
" prompt = prompt_template.format(question=query, context=context).strip()\n",
" return prompt\n"
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"def llm(prompt,model):\n",
" response = client.chat.completions.create(\n",
" model=model,\n",
" messages=[{\"role\": \"user\", \"content\": prompt}])\n",
" return response.choices[0].message.content"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {},
"outputs": [],
"source": [
"def rag(query, model='mixtral-8x7b-32768'):\n",
" search_results = search(query)\n",
" prompt = build_prompt(query, search_results)\n",
" #print(prompt)\n",
" answer = llm(prompt, model=model)\n",
" return answer"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [],
"source": [
"query=\"What should I eat if I lost a friend\""
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"\"I'm really sorry to hear that you're dealing with the loss of a friendship. It's important to remember that while food can't solve emotional pain, maintaining a balanced diet can help support your overall well-being during this difficult time.\\n\\nUnfortunately, the context provided doesn't give specific dietary recommendations for dealing with lost friendships. However, generally, it's recommended to eat a variety of nutrient-dense foods. This can include:\\n\\n1. Fruits and vegetables: These are high in vitamins, minerals, and fiber, which can support your physical health.\\n2. Lean proteins: Foods like chicken, turkey, fish, eggs, and tofu can help maintain muscle mass and support your body's healing processes.\\n3. Whole grains: Foods like brown rice, whole wheat bread, and quinoa can provide energy and help keep you feeling full.\\n4. Healthy fats: Foods like avocados, nuts, seeds, and olive oil can support brain health and help keep you feeling satisfied.\\n\\nRemember, it's also important to stay hydrated and to listen to your body's hunger and fullness cues. If you're finding it hard to eat, try smaller, more frequent meals. If you're turning to food for comfort, try to be mindful of your eating habits and consider healthier alternatives or seeking support from a mental health professional.\""
]
},
"execution_count": 62,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"rag(query)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Rag Evaluation"
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [],
"source": [
"prompt2_template = \"\"\"\n",
"You are an expert evaluator for a RAG system.\n",
"Your task is to analyze the relevance of the generated answer to the given question.\n",
"Based on the relevance of the generated answer, you will classify it\n",
"as \"NON_RELEVANT\", \"PARTLY_RELEVANT\", or \"RELEVANT\".\n",
"\n",
"Here is the data for evaluation:\n",
"\n",
"Question: {question}\n",
"Generated Answer: {answer_llm}\n",
"\n",
"Please analyze the content and context of the generated answer in relation to the question\n",
"and provide your evaluation in parsable JSON without using code blocks:\n",
"\n",
"{{\n",
" \"Relevance\": \"NON_RELEVANT\" | \"PARTLY_RELEVANT\" | \"RELEVANT\",\n",
" \"Explanation\": \"[Provide a brief explanation for your evaluation]\"\n",
"}}\n",
"\"\"\".strip()\n"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"366"
]
},
"execution_count": 64,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"len(ground_truth)"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'id': 1590140,\n",
" 'question': \"How do mental illnesses affect a person's daily functioning and relationships?\"}"
]
},
"execution_count": 65,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ground_truth[0]"
]
},
{
"cell_type": "code",
"execution_count": 66,
"metadata": {},
"outputs": [],
"source": [
"record=ground_truth[0]\n",
"question=record[\"question\"]\n",
"answer_llm=rag(question)"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"You are an expert evaluator for a RAG system.\n",
"Your task is to analyze the relevance of the generated answer to the given question.\n",
"Based on the relevance of the generated answer, you will classify it\n",
"as \"NON_RELEVANT\", \"PARTLY_RELEVANT\", or \"RELEVANT\".\n",
"\n",
"Here is the data for evaluation:\n",
"\n",
"Question: How do mental illnesses affect a person's daily functioning and relationships?\n",
"Generated Answer: Mental illnesses can significantly impact a person's daily functioning and relationships in various ways. According to the context provided, mental illnesses can affect a person's ability to perform routine activities, maintain employment, manage finances, and handle responsibilities at home. They may also experience difficulty in concentrating, making decisions, and regulating emotions, which can further interfere with their daily life.\n",
"\n",
"Furthermore, mental illnesses can strain a person's relationships with family, friends, and colleagues. The symptoms of mental illnesses, such as irritability, mood swings, and social withdrawal, can cause misunderstandings, conflicts, and tension in interpersonal relationships. Mental illnesses can also affect a person's communication, empathy, and trust, making it challenging for them to build and maintain meaningful connections with others.\n",
"\n",
"In some cases, mental illnesses can lead to social isolation, loneliness, and discrimination, further exacerbating the negative impact on a person's daily functioning and relationships. It is essential to provide support, understanding, and accommodations to individuals experiencing mental health issues to help them manage their symptoms and improve their quality of life.\n",
"\n",
"Please analyze the content and context of the generated answer in relation to the question\n",
"and provide your evaluation in parsable JSON without using code blocks:\n",
"\n",
"{\n",
" \"Relevance\": \"NON_RELEVANT\" | \"PARTLY_RELEVANT\" | \"RELEVANT\",\n",
" \"Explanation\": \"[Provide a brief explanation for your evaluation]\"\n",
"}\n"
]
}
],
"source": [
"prompt=prompt2_template.format(question=question,answer_llm=answer_llm)\n",
"print(prompt)"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "8ff19c2ce6cc44199c08e01f7d9c4ab4",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/366 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"from tqdm.auto import tqdm\n",
"import json\n",
"\n",
"evaluations=[]\n",
"\n",
"for record in tqdm(ground_truth):\n",
" id=record['id']\n",
" if id in evaluations:\n",
" continue\n",
" question=record['question']\n",
" answer_llm=rag(question)\n",
" prompt=prompt2_template.format(\n",
" question=question,\n",
" answer_llm=answer_llm)\n",
" evaluation=llm(prompt,model='mixtral-8x7b-32768')\n",
" evaluation = json.loads(evaluation)\n",
" evaluations.append((record,answer_llm,evaluation))\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 69,
"metadata": {},
"outputs": [],
"source": [
"df_eval = pd.DataFrame(evaluations, columns=['record', 'answer', 'evaluation'])\n"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>record</th>\n",
" <th>answer</th>\n",
" <th>evaluation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>{'id': 1590140, 'question': 'How do mental ill...</td>\n",
" <td>Mental illnesses can significantly impact a pe...</td>\n",
" <td>{'Relevance': 'RELEVANT', 'Explanation': 'The ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>{'id': 1590140, 'question': 'What are some exa...</td>\n",
" <td>Sure, I'd be happy to help answer your questio...</td>\n",
" <td>{'Relevance': 'RELEVANT', 'Explanation': 'The ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>{'id': 1590140, 'question': 'Why is it a misco...</td>\n",
" <td>Mental illness is not a reflection of a person...</td>\n",
" <td>{'Relevance': 'RELEVANT', 'Explanation': 'The ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>{'id': 1590140, 'question': 'How are mental il...</td>\n",
" <td>Mental illnesses are treated using a variety o...</td>\n",
" <td>{'Relevance': 'RELEVANT', 'Explanation': 'The ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>{'id': 1590140, 'question': 'Can a person with...</td>\n",
" <td>Yes, a person with a mental illness can become...</td>\n",
" <td>{'Relevance': 'RELEVANT', 'Explanation': 'The ...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" record \\\n",
"0 {'id': 1590140, 'question': 'How do mental ill... \n",
"1 {'id': 1590140, 'question': 'What are some exa... \n",
"2 {'id': 1590140, 'question': 'Why is it a misco... \n",
"3 {'id': 1590140, 'question': 'How are mental il... \n",
"4 {'id': 1590140, 'question': 'Can a person with... \n",
"\n",
" answer \\\n",
"0 Mental illnesses can significantly impact a pe... \n",
"1 Sure, I'd be happy to help answer your questio... \n",
"2 Mental illness is not a reflection of a person... \n",
"3 Mental illnesses are treated using a variety o... \n",
"4 Yes, a person with a mental illness can become... \n",
"\n",
" evaluation \n",
"0 {'Relevance': 'RELEVANT', 'Explanation': 'The ... \n",
"1 {'Relevance': 'RELEVANT', 'Explanation': 'The ... \n",
"2 {'Relevance': 'RELEVANT', 'Explanation': 'The ... \n",
"3 {'Relevance': 'RELEVANT', 'Explanation': 'The ... \n",
"4 {'Relevance': 'RELEVANT', 'Explanation': 'The ... "
]
},
"execution_count": 70,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_eval.head()"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [],
"source": [
"df_eval = pd.DataFrame(evaluations, columns=['record', 'answer', 'evaluation'])\n",
"\n",
"df_eval['id'] = df_eval.record.apply(lambda d: d['id'])\n",
"df_eval['question'] = df_eval.record.apply(lambda d: d['question'])\n",
"\n",
"df_eval['relevance'] = df_eval.evaluation.apply(lambda d: d['Relevance'])\n",
"df_eval['explanation'] = df_eval.evaluation.apply(lambda d: d['Explanation'])\n",
"\n",
"del df_eval['record']\n",
"del df_eval['evaluation']"
]
},
{
"cell_type": "code",
"execution_count": 72,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>answer</th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>relevance</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Mental illnesses can significantly impact a pe...</td>\n",
" <td>1590140</td>\n",
" <td>How do mental illnesses affect a person's dail...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer is highly relevant to the...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Sure, I'd be happy to help answer your questio...</td>\n",
" <td>1590140</td>\n",
" <td>What are some examples of serious mental illne...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer provides a detailed list ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Mental illness is not a reflection of a person...</td>\n",
" <td>1590140</td>\n",
" <td>Why is it a misconception to associate mental ...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer directly addresses the qu...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Mental illnesses are treated using a variety o...</td>\n",
" <td>1590140</td>\n",
" <td>How are mental illnesses treated, and what is ...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer fully addresses the quest...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Yes, a person with a mental illness can become...</td>\n",
" <td>1590140</td>\n",
" <td>Can a person with mental illness become indepe...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer directly addresses the qu...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" answer id \\\n",
"0 Mental illnesses can significantly impact a pe... 1590140 \n",
"1 Sure, I'd be happy to help answer your questio... 1590140 \n",
"2 Mental illness is not a reflection of a person... 1590140 \n",
"3 Mental illnesses are treated using a variety o... 1590140 \n",
"4 Yes, a person with a mental illness can become... 1590140 \n",
"\n",
" question relevance \\\n",
"0 How do mental illnesses affect a person's dail... RELEVANT \n",
"1 What are some examples of serious mental illne... RELEVANT \n",
"2 Why is it a misconception to associate mental ... RELEVANT \n",
"3 How are mental illnesses treated, and what is ... RELEVANT \n",
"4 Can a person with mental illness become indepe... RELEVANT \n",
"\n",
" explanation \n",
"0 The generated answer is highly relevant to the... \n",
"1 The generated answer provides a detailed list ... \n",
"2 The generated answer directly addresses the qu... \n",
"3 The generated answer fully addresses the quest... \n",
"4 The generated answer directly addresses the qu... "
]
},
"execution_count": 72,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_eval.head()"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"relevance\n",
"RELEVANT 348\n",
"PARTLY_RELEVANT 17\n",
"NON_RELEVANT 1\n",
"Name: count, dtype: int64\n"
]
}
],
"source": [
"# Count the occurrences of each relevance category\n",
"relevance_counts = df_eval['relevance'].value_counts()\n",
"print(relevance_counts)\n"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Installing seaborn..."
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"Loading .env environment variables...\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"Resolving seaborn...\n",
"[ ] Installing...\n",
"[= ] Installing seaborn...\n",
"Installation Succeeded\n",
"[== ] Installing seaborn...\n",
"[== ] Installing seaborn...\n",
"\n",
"Installing dependencies from Pipfile.lock (7b2755)...\n"
]
}
],
"source": [
"!pipenv install seaborn"
]
},
{
"cell_type": "code",
"execution_count": 82,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"relevance\n",
"RELEVANT 348\n",
"PARTLY_RELEVANT 17\n",
"NON_RELEVANT 1\n",
"Name: count, dtype: int64\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\USER\\AppData\\Local\\Temp\\ipykernel_16892\\1345086306.py:15: FutureWarning: \n",
"\n",
"Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n",
"\n",
" ax = sns.countplot(data=df_eval, x='relevance', palette='viridis')\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHWCAYAAABt3aEVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABghklEQVR4nO3de3yP9eP/8efOZmwzzIw1Z4YNCa1yiDHHIj7hI0YO0SaHQis5VVYph+SQYpOc4lMqhZxVJCmhnHMqRjlsjrPD6/eH395fb9uwGZurx/12u263vV/X67qu1+va+3rvuev9er/eDsYYIwAAAMACHPO6AQAAAEBuIdwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLINwCAADAMgi3AAAAsAzCLQAAACyDcAsAAADLINzC0kaNGiUHB4e7cqxGjRqpUaNGtsfr1q2Tg4ODFi9efFeO3717d5UpU+auHCunzp8/r169esnPz08ODg4aOHDgXT3+9b8j3Pvi4uLk4OCgQ4cO5XVT7OTXdl3r0KFDcnBw0Ntvv53XTQFyFeEW94z0PxbpS4ECBeTv76/w8HC9++67OnfuXK4c59ixYxo1apS2bduWK/vLTfm5bbdi7NixiouLU79+/TRnzhx17do1y7plypSx+317eHiobt26+uijj+5ii/8dGjVqZHeur112796d1827Y8aOHaslS5bkdTOUlpam6dOnq2bNmipUqJBKlCihFi1aaOPGjTna341+ny4uLrna9s8++0zh4eHy9/eXm5ubSpcurQ4dOmjnzp129U6dOqVx48apQYMGKl68uLy9vfXggw9q4cKFGfbZvXv3LNvv4OCgv/76y67+lStXNHbsWFWpUkUFChRQiRIl1KpVK/3555929fbt26dOnTqpdOnSKliwoKpUqaIxY8bo4sWLuXpOkPec87oBQHaNGTNGZcuWVXJysuLj47Vu3ToNHDhQ48eP1xdffKGQkBBb3eHDh+vFF1/M1v6PHTum0aNHq0yZMqpZs+Ytb/fNN99k6zg5caO2ffDBB0pLS7vjbbgda9as0YMPPqiRI0feUv2aNWvq+eeflyQdP35cH374oSIiIpSUlKTevXvfyab+65QuXVoxMTEZyv39/fOgNbeua9eu6tSpk9zc3LK97dixY9WhQwe1bds29xuWDUOGDNH48eP11FNP6dlnn9XZs2f1/vvvq2HDhvr+++9Vt27dbO3v5ZdfVq9evezKLly4oL59+6pZs2a52XTt2LFDRYoU0YABA1SsWDHFx8dr1qxZqlu3rjZt2qQaNWpIkjZt2qSXX35ZLVu21PDhw+Xs7Kz//e9/6tSpk37//XeNHj3ats9nnnlGYWFhdscxxqhv374qU6aMSpUqZStPTk5Wq1attHHjRvXu3VshISE6c+aMNm/erISEBJUuXVqSdPToUdWtW1deXl6KioqSj4+PNm3apJEjR2rr1q36/PPPc/W8II8Z4B4RGxtrJJktW7ZkWLd69Wrj7u5uAgMDzcWLF2/rOFu2bDGSTGxs7C3Vv3DhQqbla9euNZLMokWLbqs9t9O2/KZs2bKmVatWt1Q3MDAwQ92TJ0+aQoUKmaCgoBwdv2HDhqZhw4Y52tbKGjZsaKpVq3ZH9p2Wlnbb1+Sd4uHhYSIiIm6p7vnz57O17/TXq4MHD96wXnJysnF3dzcdOnSwK//jjz+MJPPcc89l67hZmTNnjpFk5s6days7ePCgkWTGjRuXK8dIFx8fb5ydnc0zzzxjK/vjjz/MoUOH7OqlpaWZxo0bGzc3t5ue32+//dZIMq+//rpd+ZtvvmlcXFzM5s2bb7j966+/biSZnTt32pV369bNSDKnT5++la7hHsGwBFhC48aN9corr+jw4cP6+OOPbeWZjblduXKlHnnkEXl7e6tQoUKqXLmyXnrpJUlXx8nWqVNHktSjRw/b22BxcXGSrr7dV716dW3dulUNGjRQwYIFbdtmNZ4zNTVVL730kvz8/OTh4aHHHntMR48etatTpkwZde/ePcO21+7zZm3LbMzthQsX9PzzzysgIEBubm6qXLmy3n77bRlj7Oo5ODgoKipKS5YsUfXq1eXm5qZq1app+fLlmZ/w65w8eVI9e/ZUiRIlVKBAAdWoUUOzZ8+2rU8ff3zw4EF99dVXtrZndzxi8eLFVaVKFR04cMCuPC0tTRMnTlS1atVsb0s+88wzOnPmzE33mZSUpJEjR6pChQpyc3NTQECAhg4dqqSkJFud6tWr69FHH82wbVpamkqVKqUOHTrYyt5++2099NBDKlq0qNzd3VW7du1Mx11n55z/9ddf6tmzp+2t37Jly6pfv366cuWKrc7Zs2c1cOBA2++6QoUKevPNN3Ptbn5KSopeffVVlS9fXm5ubipTpoxeeuklu/MkXX0ut27dWitWrNADDzwgd3d3vf/++1nuN/2a2r59uxo2bKiCBQuqQoUKtnO2fv161atXT+7u7qpcubJWrVplt/31Y1vXrFkjR0dHjRgxwq7evHnz5ODgoGnTpkm6ev4vXLig2bNn256P6ddg+uvG77//rv/+978qUqSIHnnkEUnS9u3b1b17d5UrV04FChSQn5+fnn76aZ06dSpH5zU5OVmXLl1SiRIl7Mp9fX3l6Ogod3d3SdKlS5dUpUoVValSRZcuXbLVO336tEqWLKmHHnpIqampWR5n3rx58vDw0OOPP57p+gkTJigwMFDu7u5q2LBhhmEF2eHr66uCBQvq7NmztrKyZcsqMDDQrp6Dg4Patm2rpKQk/fHHHzfcZ/rv77///a+tLC0tTZMmTVK7du1Ut25dpaSkZDnEIDExUZIynOeSJUvK0dFRrq6u2eki8ru8TtfArbrRnVtjjDl69KiRZHcHZOTIkebap/nOnTuNq6ureeCBB8ykSZPM9OnTzQsvvGAaNGhgjLl6x2HMmDFGkunTp4+ZM2eOmTNnjjlw4IAx5uodLj8/P1O8eHHTv39/8/7775slS5bY1l17VzD9zm1wcLAJCQkx48ePNy+++KIpUKCAqVSpkt3drMDAwEzvIF27z5u1LSIiwgQGBtq2Tb8r4uDgYHr16mXee+8906ZNGyPJDBw40O44kkyNGjVMyZIlzauvvmomTpxoypUrZwoWLGj++eefG/5eLl68aIKCgoyLi4sZNGiQeffdd039+vWNJDNx4kRb2+fMmWOKFStmatasaWv7je7WZHbnNjk52fj5+ZkSJUrYlffq1cs4Ozub3r17m+nTp5thw4YZDw8PU6dOHXPlypVMz6cxxqSmpppmzZqZggULmoEDB5r333/fREVFGWdnZ/P444/b6o0ZM8Y4Ojqa48eP2x13/fr1Ge7Oly5d2jz77LPmvffeM+PHjzd169Y1kszSpUtzdM7/+usv4+/vb2vj9OnTzSuvvGKCgoLMmTNnjDFX3z0ICQkxRYsWNS+99JKZPn266datm3FwcDADBgzI8hxfe16qVKli/v77b7vl3LlztjoRERG262vKlCm2O15t27a121dgYKCpUKGCKVKkiHnxxRfN9OnTzdq1a294bH9/fxMQEGCGDBliJk+ebKpWrWqcnJzMggULjJ+fnxk1apSZOHGiKVWqlPHy8jKJiYm27TO7QxoZGWmcnZ3N1q1bjTHGHDt2zPj4+JiwsDCTlpZmjLl6J9PNzc3Ur1/f9nzcuHGjMeb/XjeqVq1qHn/8cTN16lQzZcoUY4wxb7/9tqlfv74ZM2aMmTFjhhkwYIBxd3c3devWte07q3ZlpV69esbDw8N8/PHH5vDhw+bXX381HTp0MEWLFrVd38YY88MPPxgnJyczaNAgW1mnTp2Mu7u72bNnT5b7P3nypHF2djZdunSxK0+/cxscHGzKlClj3nzzTTN69Gjj4+NjihcvbuLj42/a9nRnzpwxJ0+eNNu3bzdPP/20kWRmzJhx0+1eeuklI8kcO3YsyzpXrlwxRYsWNQ8//LBd+Y4dO4wk89prr5nevXsbV1dXW3/WrFljV3fZsmVGknnsscfML7/8Yo4cOWIWLFhgPD09M7we4t5HuMU942bh1hhjvLy8TK1atWyPrw+3EyZMMJLM33//neU+bvTWf8OGDY0kM3369EzXZRZuS5UqZffH+JNPPjGSzKRJk2xltxJub9a268PtkiVLbC/81+rQoYNxcHAw+/fvt5VJMq6urnZlv/76q5FkJk+enOFY15o4caKRZD7++GNb2ZUrV0xoaKgpVKiQXd8zC6xZCQwMNM2aNbMFrR07dpiuXbsaSSYyMtJWL/3tymvfbjXGmOXLl2cov/58zpkzxzg6Oppvv/3Wbtvp06cbSeb77783xhizZ8+eTM/Fs88+awoVKmT3j8r1b8FfuXLFVK9e3TRu3Niu/FbPebdu3Yyjo2Omz/v0MPXqq68aDw8Ps3fvXrv1L774onFycjJHjhzJsO210p/X1y/pz8lt27YZSaZXr152273wwgtGkl2QCAwMNJLM8uXLb3jM6489b948W9nu3buNJOPo6Gh++OEHW/mKFSsyPP8zC5EXLlwwFSpUMNWqVTOXL182rVq1Mp6enubw4cN2x85qWEL660bnzp0zrMtsiMX8+fONJLNhw4Ybtisr+/btM/fff7/duS9XrpzZvXt3hrrR0dHG0dHRbNiwwSxatMjun8isTJ482UgyX3/9tV15erh1d3c3f/75p6188+bNRpJdiL6ZypUr29peqFAhM3z4cJOamnrDbU6dOmV8fX1N/fr1b1jvyy+/NJLM1KlT7co//fRTI8kULVrUVKxY0cTGxprY2FhTsWJF4+rqan799Ve7+q+++qpxd3e3O88vv/zyLfcR9w6GJcBSChUqdMNZE7y9vSVJn3/+eY7frnVzc1OPHj1uuX63bt1UuHBh2+MOHTqoZMmS+vrrr3N0/Fv19ddfy8nJSc8995xd+fPPPy9jjJYtW2ZXHhYWpvLly9seh4SEyNPT86ZvF3799dfy8/NT586dbWUuLi567rnndP78ea1fvz7Hffjmm29UvHhxFS9eXMHBwZozZ4569OihcePG2eosWrRIXl5eatq0qf755x/bUrt2bRUqVEhr167Ncv+LFi1SUFCQqlSpYrdt48aNJcm2baVKlVSzZk27T3anpqZq8eLFatOmje2tY0l2P585c0YJCQmqX7++fv755wzHv9k5T0tL05IlS9SmTRs98MADGbZPH3KzaNEi1a9fX0WKFLHrR1hYmFJTU7Vhw4Ybn2hdHU6wcuVKu2Xo0KGSZHuuDh482G6b9A/7ffXVV3blZcuWVXh4+E2Pma5QoULq1KmT7XHlypXl7e2toKAg1atXz1ae/vPNnpMFCxZUXFycdu3apQYNGuirr77ShAkTdN99991ymySpb9++Gcqu/f1evnxZ//zzjx588EFJyvR3fCsKFy6satWqKTIyUp9++qmmTp2qlJQUtW3bVv/8849d3VGjRqlatWqKiIjQs88+q4YNG2a4xq83b948FS9eXE2bNs10fdu2be0+pFW3bl3Vq1cvW69RsbGxWr58uaZOnaqgoCBdunTphsMk0tLS1KVLF509e1aTJ0++aftdXFz05JNP2pWfP39eknTu3DmtXr1a3bt3V/fu3bVq1SoZY/TWW2/Z1S9TpowaNGigGTNm6H//+5+efvppjR07Vu+9994t9xP3BmZLgKWcP39evr6+Wa7v2LGjPvzwQ/Xq1UsvvviimjRpoieeeEIdOnSQo+Ot/a9XqlSpbI3Pqlixot1jBwcHVahQ4Y7Pf3n48GH5+/vbBWtJCgoKsq2/VmZ/+IsUKXLTcauHDx9WxYoVM5y/rI6THfXq1dNrr72m1NRU7dy5U6+99prOnDljd/737dunhISELH/vJ0+ezHL/+/bt065du1S8ePGbbtuxY0e99NJL+uuvv1SqVCmtW7dOJ0+eVMeOHe22Wbp0qV577TVt27bNbjxqZvMt3+yc//3330pMTFT16tWz7EN6P7Zv335L/ciKh4dHhk+opzt8+LAcHR1VoUIFu3I/Pz95e3tn+B2XLVv2pse7VunSpTOcHy8vLwUEBGQok3RLY6kffvhh9evXT1OmTFF4eLiefvrpbLVJyrwfp0+f1ujRo7VgwYIM5zUhISHLfSUkJNiNlXV1dZWPj49SUlIUFhamRo0a2YW8sLAwVatWTePGjdObb75pt92sWbNUp04dFShQQLGxsTecy/uPP/7Qpk2bFBUVJWfnzP/kX/8aJV39h+6TTz6RdHW87/V98/Pzs3scGhpq+7lTp0626z+rOXT79++v5cuX66OPPrLNqJCZ8+fP6/PPP1d4eLiKFi1qty79H42HH37Y7rly33336ZFHHrGbSm3BggXq06eP9u7da5tB4YknnlBaWpqGDRumzp07Z9g/7l2EW1jGn3/+qYSEhAx/gK/l7u6uDRs2aO3atfrqq6+0fPlyLVy4UI0bN9Y333wjJyenmx7n2js3uSWrP06pqam31KbckNVxzHUfPrubihUrZgtc4eHhqlKlilq3bq1JkybZ7iKmpaXJ19dXc+fOzXQfWQW+9G2Dg4M1fvz4TNdf+wezY8eOio6O1qJFizRw4EB98skn8vLyUvPmzW11vv32Wz322GNq0KCBpk6dqpIlS8rFxUWxsbGaN29ehv3n1jlPS0tT06ZNbXdar1epUqVs7S8rt/qFKNm9RrI6D7dzfpKSkrRu3TpJ0oEDB3Tx4kUVLFgwW+3KrB9PPvmkNm7cqCFDhtjmpU1LS1Pz5s1v+G7QgAED7D5k2bBhQ61bt04bNmzQzp07MzwHK1asqKCgIH3//fcZ9rVixQpJV+8c79u374b/TKQ/77p06XLjzt7AwoULM7xbdaPfQZEiRdS4cWPNnTs303A7evRoTZ06VW+88cYN57qWpCVLlujixYuZtj99mrrrPyQmXf1Q2y+//GJ7PHXqVNWqVcsWbNM99thjiouL0y+//JLlP3e49xBuYRlz5syRpJu+Hero6KgmTZqoSZMmGj9+vMaOHauXX35Za9euVVhYWK5/o9m+ffvsHhtjtH//frv5eIsUKWL3yeJ0hw8fVrly5WyPs9O2wMBArVq1SufOnbO7e5s+Kf/1n1zOqcDAQG3fvl1paWl2d29z+ziS1KpVKzVs2FBjx47VM888Iw8PD5UvX16rVq3Sww8/nO1QVb58ef36669q0qTJTc9t2bJlVbduXS1cuFBRUVH69NNP1bZtW7v5Vf/3v/+pQIECWrFihV15bGxs9jr6/xUvXlyenp43/eR6+fLldf78+Tv2xzkwMFBpaWnat2+f7Y6cJJ04cUJnz57N1d9xbhk5cqR27dqlt99+W8OGDdOLL76od999165Odq/1M2fOaPXq1Ro9erTdbAzXX+OZGTp0qJ566inb4yJFiki6eg4lZfoWfnJyslJSUuzKtm/frjFjxqhHjx7atm2bevXqpR07dtjual9v3rx5Kl++vG3oRGYya//evXtts6+Eh4dr5cqVN+7gdTK72ytJU6ZM0ahRozRw4EANGzbspvuZO3euChUqpMceeyzDuuDgYLm4uGT4Ugfp6pzg1/5je+LECds5v1ZycrIkZTjPuLcx5haWsGbNGr366qsqW7bsDe9QnD59OkNZ+pchpL+F7OHhIUmZhs2c+Oijj+zGAS9evFjHjx9XixYtbGXly5fXDz/8YDe109KlSzNMGZadtrVs2VKpqakZxpNNmDBBDg4Odse/HS1btlR8fLzdeNSUlBRNnjxZhQoVUsOGDXPlOOmGDRumU6dO6YMPPpB09U5aamqqXn311Qx1U1JSbniunnzySf3111+2fV3r0qVLunDhgl1Zx44d9cMPP2jWrFn6559/MgxJcHJykoODg11QOXToUI6/BcvR0VFt27bVl19+qZ9++inD+vS7Z08++aQ2bdpku6N3rbNnz972H+6WLVtKkiZOnGhXnn63sVWrVre1/9y2efNmvf322xo4cKCef/55DRkyRO+9916G8d8eHh7Zus7T7yRff9fy+vOSmapVqyosLMy21K5dW9L/3VVfsGCBXf2ff/5Ze/bsUa1atWxlycnJ6t69u/z9/TVp0iTFxcXpxIkTGjRoUKbH/OWXX7Rr1y676bMys2TJEruA+OOPP2rz5s2214iSJUvatf3af6IyG/Jy6NAhrV69OsM48YULF+q5555Tly5dsny35Fp///23Vq1apXbt2mV6171w4cJq2bKlNm7caPdNert27dLGjRvtxhhXqlRJv/zyi/bu3Wu3j/nz58vR0dHuZgPufdy5xT1n2bJl2r17t1JSUnTixAmtWbNGK1euVGBgoL744gsVKFAgy23HjBmjDRs2qFWrVgoMDNTJkyc1depUlS5d2jaPZfny5eXt7a3p06ercOHC8vDwUL169bI9jjCdj4+PHnnkEfXo0UMnTpzQxIkTVaFCBbtv2OrVq5cWL16s5s2b68knn9SBAwf08ccf233YKLtta9OmjR599FG9/PLLOnTokGrUqKFvvvlGn3/+uQYOHJhh3znVp08fvf/+++revbu2bt2qMmXKaPHixfr+++81ceLEDGN+b1eLFi1UvXp1jR8/XpGRkWrYsKGeeeYZxcTEaNu2bWrWrJlcXFy0b98+LVq0SJMmTbKbh/ZaXbt21SeffKK+fftq7dq1evjhh5Wamqrdu3frk08+sc3Vmu7JJ5/UCy+8oBdeeEE+Pj4Z7pS2atVK48ePV/PmzfXf//5XJ0+e1JQpU1ShQgVt3749R/0dO3asvvnmGzVs2FB9+vRRUFCQjh8/rkWLFum7776Tt7e3hgwZoi+++EKtW7dW9+7dVbt2bV24cEE7duzQ4sWLdejQIRUrVixHx5ekGjVqKCIiQjNmzNDZs2fVsGFD/fjjj5o9e7batm2b6RzAeeXy5cuKiIhQxYoV9frrr0u6+jb4l19+qR49emjHjh22fxJr166tVatWafz48fL391fZsmXtPsB2PU9PTzVo0EBvvfWWkpOTVapUKX3zzTc6ePBgjttbu3ZtNW3aVLNnz1ZiYqKaNWum48ePa/LkyXJ3d9fAgQNtddPHcq9evVqFCxdWSEiIRowYoeHDh6tDhw62f0LSpQ/VudmQhAoVKuiRRx5Rv379lJSUpIkTJ6po0aJZDnO5VnBwsJo0aaKaNWuqSJEi2rdvn2bOnKnk5GS98cYbtno//vijunXrpqJFi6pJkyYZhhE99NBDdu9SSVfDcEpKyg3bP3bsWK1evVqNGze2fbDu3XfflY+Pj20Ocunqt8AtW7ZM9evXV1RUlIoWLaqlS5dq2bJl6tWrV77/Jj5kU57N0wBkU/rUOumLq6ur8fPzM02bNjWTJk2ym3Iq3fVTga1evdo8/vjjxt/f37i6uhp/f3/TuXPnDFMoff7556Zq1arG2dnZbuqhG32TU1ZTgc2fP99ER0cbX19f4+7ublq1apVhSiJjjHnnnXdMqVKljJubm3n44YfNTz/9lOk3amXVtuunAjPGmHPnzplBgwYZf39/4+LiYipWrGjGjRtnNx+nMSbD9Frpspqi7HonTpwwPXr0MMWKFTOurq4mODg40+nKsjsVWFZ14+LiMkwJNWPGDFO7dm3j7u5uChcubIKDg83QoUPt5s/M7HxeuXLFvPnmm6ZatWrGzc3NFClSxNSuXduMHj3aJCQkZDj2ww8/nOm0WOlmzpxpKlasaNzc3EyVKlVMbGxshuehMdk754cPHzbdunUzxYsXN25ubqZcuXImMjLSJCUl2eqcO3fOREdHmwoVKhhXV1dTrFgx89BDD5m3337bbq7fzNzKN5QlJyeb0aNHm7JlyxoXFxcTEBBgoqOjzeXLlzO0/1Z/xzc6dlb7uf68XT/l1qBBg4yTk1OGb6z66aefjLOzs+nXr5+tbPfu3aZBgwa26aHSz3v67yuzKQP//PNP065dO+Pt7W28vLzMf/7zH3Ps2DEjyYwcOTLLdt3IxYsXzZgxY0zVqlWNu7u78fLyMq1btza//PKLrc7WrVuNs7Oz6d+/v922KSkppk6dOsbf398277ExV+dwLlWqlLn//vuzPO6131D2zjvvmICAANvcv9dPo5WVkSNHmgceeMAUKVLEODs7G39/f9OpUyezfft2u3rXv35fv2T2evHggw8aX19fk5KScsM2bN261YSFhRkPDw9TuHBh8/jjj2d4TTfm6hRnLVq0MH5+fsbFxcVUqlTJvP766yY5OfmW+op7h4MxefhpEQAAACAXMeYWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGXwJQ66+r3sx44dU+HChXP9q1cBAABw+4wxOnfunPz9/e2+7v16hFtd/Q7qgICAvG4GAAAAbuLo0aMqXbp0lusJt5Lt60GPHj0qT0/PPG4NAAAArpeYmKiAgICbfq074VayDUXw9PQk3AIAAORjNxtCygfKAAAAYBmEWwAAAFgG4RYAAACWQbhFrjt37pwGDhyowMBAubu766GHHtKWLVts67t37y4HBwe7pXnz5jfc54YNG9SmTRv5+/vLwcFBS5YsyVDn7bfflq+vr3x9ffXOO+/Yrdu8ebNq166tlJSUXOkjAADIn/hAGXJdr169tHPnTs2ZM0f+/v76+OOPFRYWpt9//12lSpWSJDVv3lyxsbG2bdzc3G64zwsXLqhGjRp6+umn9cQTT2RYv337do0YMUJLly6VMUatW7dWs2bNFBwcrJSUFPXt21czZsyQszNPeQAArIy/9MhVly5d0v/+9z99/vnnatCggSRp1KhR+vLLLzVt2jS99tprkq6GWT8/v1veb4sWLdSiRYss1+/evVshISFq3LixJCkkJES7d+9WcHCwxo0bpwYNGqhOnTq30TMAAHAvINwiV6WkpCg1NVUFChSwK3d3d9d3331ne7xu3Tr5+vqqSJEiaty4sV577TUVLVo0x8cNDg7W3r17deTIERljtHfvXlWvXl0HDhxQbGystm7dmuN9AwCAewdjbpGrChcurNDQUL366qs6duyYUlNT9fHHH2vTpk06fvy4pKtDEj766COtXr1ab775ptavX68WLVooNTU1x8cNCgrS2LFj1bRpUzVr1kwxMTEKCgrSM888o7feeksrVqxQ9erVVatWLW3YsCG3ugsAAPIZ7twi182ZM0dPP/20SpUqJScnJ91///3q3Lmz7e5pp06dbHWDg4MVEhKi8uXLa926dWrSpEmOj9u3b1/17dvX9nj27Nm2sF25cmVt2bJFf/75pzp16qSDBw/edJwvAAC49+Tpndtp06YpJCTE9s1goaGhWrZsmW19o0aNMnyq/trwIklHjhxRq1atVLBgQfn6+mrIkCF8Ij6PlS9fXuvXr9f58+d19OhR/fjjj0pOTla5cuUyrV+uXDkVK1ZM+/fvz7U2/PPPPxo9erQmT56szZs3q1KlSqpYsaIeffRRJScna+/evbl2LAAAkH/k6Z3b0qVL64033lDFihVljNHs2bP1+OOP65dfflG1atUkSb1799aYMWNs2xQsWND2c2pqqlq1aiU/Pz9t3LhRx48fV7du3eTi4qKxY8fe9f7AnoeHhzw8PHTmzBmtWLFCb731Vqb1/vzzT506dUolS5bMtWMPGjRIgwYNUunSpbVlyxYlJyfb1qWPCwYAANaTp+G2TZs2do9ff/11TZs2TT/88IMt3BYsWDDLT9V/8803+v3337Vq1SqVKFFCNWvW1Kuvvqphw4Zp1KhRcnV1veN9QEYrVqyQMUaVK1fW/v37NWTIEFWpUkU9evTQ+fPnNXr0aLVv315+fn46cOCAhg4dqgoVKig8PNy2jyZNmqhdu3aKioqSJJ0/f97uzu7Bgwe1bds2+fj46L777rM7/sqVK7V3717Nnj1bklSnTh3t3r1by5Yt09GjR+Xk5KTKlSvfhTMBAADutnzzgbLU1FQtWLBAFy5cUGhoqK187ty5KlasmKpXr67o6GhdvHjRtm7Tpk0KDg5WiRIlbGXh4eFKTEzUb7/9luWxkpKSlJiYaLcg9yQkJCgyMlJVqlRRt27d9Mgjj2jFihVycXGRk5OTtm/frscee0yVKlVSz549Vbt2bX377bd2Y2APHDigf/75x/b4p59+Uq1atVSrVi1J0uDBg1WrVi2NGDHC7tiXLl1SVFSU3n//fTk6Xn16ly5dWpMnT1aPHj30+uuva/bs2XJ3d78LZwIAANxtDsYYk5cN2LFjh0JDQ3X58mUVKlRI8+bNU8uWLSVJM2bMUGBgoPz9/bV9+3YNGzZMdevW1aeffipJ6tOnjw4fPqwVK1bY9nfx4kV5eHjo66+/znJe1FGjRmn06NEZyhMSEuTp6XkHegkAAIDbkZiYKC8vr5vmtTyfLaFy5cratm2bEhIStHjxYkVERGj9+vWqWrWq+vTpY6sXHByskiVLqkmTJjpw4IDKly+f42NGR0dr8ODBtseJiYkKCAi4rX4AAAAg7+V5uHV1dVWFChUkSbVr19aWLVs0adIkvf/++xnq1qtXT5K0f/9+lS9fXn5+fvrxxx/t6pw4cUKSbvjtV25ubnd8GqhmHcfcvBJwl32zcMTNKwEAcA/LN2Nu06WlpSkpKSnTddu2bZMk26fqQ0NDtWPHDp08edJWZ+XKlfL09FTVqlXveFsBAACQv+Tpndvo6Gi1aNFC9913n86dO6d58+Zp3bp1WrFihQ4cOGAbf1u0aFFt375dgwYNUoMGDRQSEiJJatasmapWraquXbvqrbfeUnx8vIYPH67IyEgm6AcAAPgXytNwe/LkSXXr1k3Hjx+Xl5eXQkJCtGLFCjVt2lRHjx7VqlWrNHHiRF24cEEBAQFq3769hg8fbtveyclJS5cuVb9+/RQaGioPDw9FRETYzYsLAACAf488DbczZ87Mcl1AQIDWr19/030EBgbq66+/zs1mAQAA4B6V78bcAgAAADlFuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBl5Gm4nTZtmkJCQuTp6SlPT0+FhoZq2bJltvWXL19WZGSkihYtqkKFCql9+/Y6ceKE3T6OHDmiVq1aqWDBgvL19dWQIUOUkpJyt7sCAACAfCBPw23p0qX1xhtvaOvWrfrpp5/UuHFjPf744/rtt98kSYMGDdKXX36pRYsWaf369Tp27JieeOIJ2/apqalq1aqVrly5oo0bN2r27NmKi4vTiBEj8qpLAAAAyEMOxhiT1424lo+Pj8aNG6cOHTqoePHimjdvnjp06CBJ2r17t4KCgrRp0yY9+OCDWrZsmVq3bq1jx46pRIkSkqTp06dr2LBh+vvvv+Xq6npLx0xMTJSXl5cSEhLk6emZK/1o1nFMruwHyE3fLOQfPwDAvelW81q+GXObmpqqBQsW6MKFCwoNDdXWrVuVnJyssLAwW50qVarovvvu06ZNmyRJmzZtUnBwsC3YSlJ4eLgSExNtd38zk5SUpMTERLsFAAAA9748D7c7duxQoUKF5Obmpr59++qzzz5T1apVFR8fL1dXV3l7e9vVL1GihOLj4yVJ8fHxdsE2fX36uqzExMTIy8vLtgQEBORupwAAAJAn8jzcVq5cWdu2bdPmzZvVr18/RURE6Pfff7+jx4yOjlZCQoJtOXr06B09HgAAAO4O57xugKurqypUqCBJql27trZs2aJJkyapY8eOunLlis6ePWt39/bEiRPy8/OTJPn5+enHH3+021/6bArpdTLj5uYmNze3XO4JAAAA8lqe37m9XlpampKSklS7dm25uLho9erVtnV79uzRkSNHFBoaKkkKDQ3Vjh07dPLkSVudlStXytPTU1WrVr3rbQcAAEDeytM7t9HR0WrRooXuu+8+nTt3TvPmzdO6deu0YsUKeXl5qWfPnho8eLB8fHzk6emp/v37KzQ0VA8++KAkqVmzZqpataq6du2qt956S/Hx8Ro+fLgiIyO5MwsAAPAvlKfh9uTJk+rWrZuOHz8uLy8vhYSEaMWKFWratKkkacKECXJ0dFT79u2VlJSk8PBwTZ061ba9k5OTli5dqn79+ik0NFQeHh6KiIjQmDFMwwUAAPBvlO/muc0LzHOLfwvmuQUA3KvuuXluAQAAgNtFuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJaRp+E2JiZGderUUeHCheXr66u2bdtqz549dnUaNWokBwcHu6Vv3752dY4cOaJWrVqpYMGC8vX11ZAhQ5SSknI3uwIAAIB8wDkvD75+/XpFRkaqTp06SklJ0UsvvaRmzZrp999/l4eHh61e7969NWbMGNvjggUL2n5OTU1Vq1at5Ofnp40bN+r48ePq1q2bXFxcNHbs2LvaHwAAAOStPA23y5cvt3scFxcnX19fbd26VQ0aNLCVFyxYUH5+fpnu45tvvtHvv/+uVatWqUSJEqpZs6ZeffVVDRs2TKNGjZKrq+sd7QMAAADyj3w15jYhIUGS5OPjY1c+d+5cFStWTNWrV1d0dLQuXrxoW7dp0yYFBwerRIkStrLw8HAlJibqt99+y/Q4SUlJSkxMtFsAAABw78vTO7fXSktL08CBA/Xwww+revXqtvL//ve/CgwMlL+/v7Zv365hw4Zpz549+vTTTyVJ8fHxdsFWku1xfHx8pseKiYnR6NGj71BPAAAAkFfyTbiNjIzUzp079d1339mV9+nTx/ZzcHCwSpYsqSZNmujAgQMqX758jo4VHR2twYMH2x4nJiYqICAgZw0HAABAvpEvhiVERUVp6dKlWrt2rUqXLn3DuvXq1ZMk7d+/X5Lk5+enEydO2NVJf5zVOF03Nzd5enraLQAAALj35Wm4NcYoKipKn332mdasWaOyZcvedJtt27ZJkkqWLClJCg0N1Y4dO3Ty5ElbnZUrV8rT01NVq1a9I+0GAABA/pSnwxIiIyM1b948ff755ypcuLBtjKyXl5fc3d114MABzZs3Ty1btlTRokW1fft2DRo0SA0aNFBISIgkqVmzZqpataq6du2qt956S/Hx8Ro+fLgiIyPl5uaWl90DAADAXZand26nTZumhIQENWrUSCVLlrQtCxculCS5urpq1apVatasmapUqaLnn39e7du315dffmnbh5OTk5YuXSonJyeFhobqqaeeUrdu3ezmxQUAAMC/Q57euTXG3HB9QECA1q9ff9P9BAYG6uuvv86tZgEAAOAelS8+UAYAAADkBsItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALCNPw21MTIzq1KmjwoULy9fXV23bttWePXvs6ly+fFmRkZEqWrSoChUqpPbt2+vEiRN2dY4cOaJWrVqpYMGC8vX11ZAhQ5SSknI3uwIAAIB8IE/D7fr16xUZGakffvhBK1euVHJyspo1a6YLFy7Y6gwaNEhffvmlFi1apPXr1+vYsWN64oknbOtTU1PVqlUrXblyRRs3btTs2bMVFxenESNG5EWXAAAAkIccjDEmrxuR7u+//5avr6/Wr1+vBg0aKCEhQcWLF9e8efPUoUMHSdLu3bsVFBSkTZs26cEHH9SyZcvUunVrHTt2TCVKlJAkTZ8+XcOGDdPff/8tV1fXmx43MTFRXl5eSkhIkKenZ670pVnHMbmyHyA3fbOQf/oAAPemW81r+WrMbUJCgiTJx8dHkrR161YlJycrLCzMVqdKlSq67777tGnTJknSpk2bFBwcbAu2khQeHq7ExET99ttvmR4nKSlJiYmJdgsAAADufTkKt+XKldOpU6cylJ89e1blypXLUUPS0tI0cOBAPfzww6pevbokKT4+Xq6urvL29rarW6JECcXHx9vqXBts09enr8tMTEyMvLy8bEtAQECO2gwAAID8JUfh9tChQ0pNTc1QnpSUpL/++itHDYmMjNTOnTu1YMGCHG2fHdHR0UpISLAtR48evePHBAAAwJ3nnJ3KX3zxhe3nFStWyMvLy/Y4NTVVq1evVpkyZbLdiKioKC1dulQbNmxQ6dKlbeV+fn66cuWKzp49a3f39sSJE/Lz87PV+fHHH+32lz6bQnqd67m5ucnNzS3b7QQAAED+lq1w27ZtW0mSg4ODIiIi7Na5uLioTJkyeuedd255f8YY9e/fX5999pnWrVunsmXL2q2vXbu2XFxctHr1arVv316StGfPHh05ckShoaGSpNDQUL3++us6efKkfH19JUkrV66Up6enqlatmp3uAQAA4B6XrXCblpYmSSpbtqy2bNmiYsWK3dbBIyMjNW/ePH3++ecqXLiwbYysl5eX3N3d5eXlpZ49e2rw4MHy8fGRp6en+vfvr9DQUD344IOSpGbNmqlq1arq2rWr3nrrLcXHx2v48OGKjIzk7iwAAMC/TLbCbbqDBw/mysGnTZsmSWrUqJFdeWxsrLp37y5JmjBhghwdHdW+fXslJSUpPDxcU6dOtdV1cnLS0qVL1a9fP4WGhsrDw0MREREaM4apuAAAAP5tcjzP7erVq7V69WqdPHnSdkc33axZs3KlcXcL89zi34J5bgEA96pbzWs5unM7evRojRkzRg888IBKliwpBweHHDcUAAAAyC05CrfTp09XXFycunbtmtvtAQAAAHIsR/PcXrlyRQ899FButwUAAAC4LTkKt7169dK8efNyuy0AAADAbcnRsITLly9rxowZWrVqlUJCQuTi4mK3fvz48bnSOAAAACA7chRut2/frpo1a0qSdu7cabeOD5cBAAAgr+Qo3K5duza32wEAAADcthyNuQUAAADyoxzduX300UdvOPxgzZo1OW4QAAAAkFM5Crfp423TJScna9u2bdq5c6ciIiJyo10AAABAtuUo3E6YMCHT8lGjRun8+fO31SAAAAAgp3J1zO1TTz2lWbNm5eYuAQAAgFuWq+F206ZNKlCgQG7uEgAAALhlORqW8MQTT9g9Nsbo+PHj+umnn/TKK6/kSsMAAACA7MpRuPXy8rJ77OjoqMqVK2vMmDFq1qxZrjQMAAAAyK4chdvY2NjcbgcAAABw23IUbtNt3bpVu3btkiRVq1ZNtWrVypVGAQAAADmRo3B78uRJderUSevWrZO3t7ck6ezZs3r00Ue1YMECFS9ePDfbCAAAANySHM2W0L9/f507d06//fabTp8+rdOnT2vnzp1KTEzUc889l9ttBAAAAG5Jju7cLl++XKtWrVJQUJCtrGrVqpoyZQofKAMAAECeydGd27S0NLm4uGQod3FxUVpa2m03CgAAAMiJHIXbxo0ba8CAATp27Jit7K+//tKgQYPUpEmTXGscAAAAkB05CrfvvfeeEhMTVaZMGZUvX17ly5dX2bJllZiYqMmTJ+d2GwEAAIBbkqMxtwEBAfr555+1atUq7d69W5IUFBSksLCwXG0cAAAAkB3ZunO7Zs0aVa1aVYmJiXJwcFDTpk3Vv39/9e/fX3Xq1FG1atX07bff3qm2AgAAADeUrXA7ceJE9e7dW56enhnWeXl56ZlnntH48eNzrXEAAABAdmQr3P76669q3rx5luubNWumrVu33najAAAAgJzIVrg9ceJEplOApXN2dtbff/99240CAAAAciJb4bZUqVLauXNnluu3b9+ukiVL3najAAAAgJzIVrht2bKlXnnlFV2+fDnDukuXLmnkyJFq3bp1rjUOAAAAyI5sTQU2fPhwffrpp6pUqZKioqJUuXJlSdLu3bs1ZcoUpaam6uWXX74jDQUAAABuJlvhtkSJEtq4caP69eun6OhoGWMkSQ4ODgoPD9eUKVNUokSJO9JQAAAA4Gay/SUOgYGB+vrrr3XmzBnt379fxhhVrFhRRYoUuRPtAwAAAG5Zjr6hTJKKFCmiOnXq5GZbAAAAgNuSrQ+UAQAAAPkZ4RYAAACWQbgFAACAZRBuAQAAYBmEWwAAAFgG4RYAAACWQbgFAACAZRBuAQAAYBl5Gm43bNigNm3ayN/fXw4ODlqyZInd+u7du8vBwcFuad68uV2d06dPq0uXLvL09JS3t7d69uyp8+fP38VeAAAAIL/I03B74cIF1ahRQ1OmTMmyTvPmzXX8+HHbMn/+fLv1Xbp00W+//aaVK1dq6dKl2rBhg/r06XOnmw4AAIB8KMdfv5sbWrRooRYtWtywjpubm/z8/DJdt2vXLi1fvlxbtmzRAw88IEmaPHmyWrZsqbffflv+/v653mYAAADkX/l+zO26devk6+urypUrq1+/fjp16pRt3aZNm+Tt7W0LtpIUFhYmR0dHbd68Oct9JiUlKTEx0W4BAADAvS9fh9vmzZvro48+0urVq/Xmm29q/fr1atGihVJTUyVJ8fHx8vX1tdvG2dlZPj4+io+Pz3K/MTEx8vLysi0BAQF3tB8AAAC4O/J0WMLNdOrUyfZzcHCwQkJCVL58ea1bt05NmjTJ8X6jo6M1ePBg2+PExEQCLgAAgAXk6zu31ytXrpyKFSum/fv3S5L8/Px08uRJuzopKSk6ffp0luN0pavjeD09Pe0WAAAA3PvuqXD7559/6tSpUypZsqQkKTQ0VGfPntXWrVttddasWaO0tDTVq1cvr5oJAACAPJKnwxLOnz9vuwsrSQcPHtS2bdvk4+MjHx8fjR49Wu3bt5efn58OHDigoUOHqkKFCgoPD5ckBQUFqXnz5urdu7emT5+u5ORkRUVFqVOnTsyUAAAA8C+Up3duf/rpJ9WqVUu1atWSJA0ePFi1atXSiBEj5OTkpO3bt+uxxx5TpUqV1LNnT9WuXVvffvut3NzcbPuYO3euqlSpoiZNmqhly5Z65JFHNGPGjLzqEgAAAPJQnt65bdSokYwxWa5fsWLFTffh4+OjefPm5WazAAAAcI+6p8bcAgAAADdCuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJZBuAUAAIBlEG4BAABgGYRbAAAAWAbhFgAAAJaRp+F2w4YNatOmjfz9/eXg4KAlS5bYrTfGaMSIESpZsqTc3d0VFhamffv22dU5ffq0unTpIk9PT3l7e6tnz546f/78XewFAAAA8os8DbcXLlxQjRo1NGXKlEzXv/XWW3r33Xc1ffp0bd68WR4eHgoPD9fly5dtdbp06aLffvtNK1eu1NKlS7Vhwwb16dPnbnUBAAAA+YhzXh68RYsWatGiRabrjDGaOHGihg8frscff1yS9NFHH6lEiRJasmSJOnXqpF27dmn58uXasmWLHnjgAUnS5MmT1bJlS7399tvy9/e/a30BAABA3su3Y24PHjyo+Ph4hYWF2cq8vLxUr149bdq0SZK0adMmeXt724KtJIWFhcnR0VGbN2/Oct9JSUlKTEy0WwAAAHDvy7fhNj4+XpJUokQJu/ISJUrY1sXHx8vX19duvbOzs3x8fGx1MhMTEyMvLy/bEhAQkMutBwAAQF7It+H2ToqOjlZCQoJtOXr0aF43CQAAALkg34ZbPz8/SdKJEyfsyk+cOGFb5+fnp5MnT9qtT0lJ0enTp211MuPm5iZPT0+7BQAAAPe+fBtuy5YtKz8/P61evdpWlpiYqM2bNys0NFSSFBoaqrNnz2rr1q22OmvWrFFaWprq1at319sMAACAvJWnsyWcP39e+/fvtz0+ePCgtm3bJh8fH913330aOHCgXnvtNVWsWFFly5bVK6+8In9/f7Vt21aSFBQUpObNm6t3796aPn26kpOTFRUVpU6dOjFTAgAAwL9Qnobbn376SY8++qjt8eDBgyVJERERiouL09ChQ3XhwgX16dNHZ8+e1SOPPKLly5erQIECtm3mzp2rqKgoNWnSRI6Ojmrfvr3efffdu94XAAAA5D0HY4zJ60bktcTERHl5eSkhISHXxt826zgmV/YD5KZvFo7I6yYAAJAjt5rX8u2YWwAAACC7CLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwAAAMsg3AIAAMAyCLcAAACwjHwdbkeNGiUHBwe7pUqVKrb1ly9fVmRkpIoWLapChQqpffv2OnHiRB62GAAAAHkpX4dbSapWrZqOHz9uW7777jvbukGDBunLL7/UokWLtH79eh07dkxPPPFEHrYWAAAAeck5rxtwM87OzvLz88tQnpCQoJkzZ2revHlq3LixJCk2NlZBQUH64Ycf9OCDD97tpgIAACCP5fs7t/v27ZO/v7/KlSunLl266MiRI5KkrVu3Kjk5WWFhYba6VapU0X333adNmzbdcJ9JSUlKTEy0WwAAAHDvy9fhtl69eoqLi9Py5cs1bdo0HTx4UPXr19e5c+cUHx8vV1dXeXt7221TokQJxcfH33C/MTEx8vLysi0BAQF3sBcAAAC4W/L1sIQWLVrYfg4JCVG9evUUGBioTz75RO7u7jneb3R0tAYPHmx7nJiYSMAFAACwgHx95/Z63t7eqlSpkvbv3y8/Pz9duXJFZ8+etatz4sSJTMfoXsvNzU2enp52CwAAAO5991S4PX/+vA4cOKCSJUuqdu3acnFx0erVq23r9+zZoyNHjig0NDQPWwkAAIC8kq+HJbzwwgtq06aNAgMDdezYMY0cOVJOTk7q3LmzvLy81LNnTw0ePFg+Pj7y9PRU//79FRoaykwJAAAA/1L5Otz++eef6ty5s06dOqXixYvrkUce0Q8//KDixYtLkiZMmCBHR0e1b99eSUlJCg8P19SpU/O41QAAAMgrDsYYk9eNyGuJiYny8vJSQkJCro2/bdZxTK7sB8hN3ywckddNAAAgR241r91TY24BAACAGyHcAgAAwDIItwAAALAMwi0AAAAsg3ALAAAAyyDcAgAAwDIItwAAALAMwi0AAAAsg3ALAAAAyyDcAgAAwDIItwAAALAMwi0AAAAsg3ALAAAAyyDcAgAAwDIItwAAALAMwi0A3APeeOMNOTg4aODAgTesd/bsWUVGRqpkyZJyc3NTpUqV9PXXX9vWz507VwEBASpSpIgGDx5st+2hQ4dUqVIlJSYm3okuAMBd4ZzXDQAA3NiWLVv0/vvvKyQk5Ib1rly5oqZNm8rX11eLFy9WqVKldPjwYXl7e0uS/vnnH/Xq1UtxcXEqV66cWrVqpcaNG6t169aSpGeffVZvvPGGPD0973SXAOCOIdwCQD52/vx5denSRR988IFee+21G9adNWuWTp8+rY0bN8rFxUWSVKZMGdv6P/74Q15eXurYsaMk6dFHH9WuXbvUunVrzZ8/Xy4uLnriiSfuWF8A4G5gWAIA5GORkZFq1aqVwsLCblr3iy++UGhoqCIjI1WiRAlVr15dY8eOVWpqqiSpYsWKunjxon755RedPn1aW7ZsUUhIiM6cOaNXXnlF77333p3uDgDccdy5BYB8asGCBfr555+1ZcuWW6r/xx9/aM2aNerSpYu+/vpr7d+/X88++6ySk5M1cuRIFSlSRLNnz1a3bt106dIldevWTeHh4erZs6eioqJ08OBBPfbYY0pOTtaoUaPUoUOHO9xDAMh9hFsAyIeOHj2qAQMGaOXKlSpQoMAtbZOWliZfX1/NmDFDTk5Oql27tv766y+NGzdOI0eOlCS1a9dO7dq1s22zfv16bd++XZMnT1aFChU0f/58+fn5qW7dumrQoIF8fX3vSP8A4E4h3AJAPrR161adPHlS999/v60sNTVVGzZs0HvvvaekpCQ5OTnZbVOyZEm5uLjYlQcFBSk+Pl5XrlyRq6urXf2kpCQ9++yzmjNnjvbv36+UlBQ1bNhQklSpUiVt3rxZbdq0uYO9BIDcx5hbAMiHmjRpoh07dmjbtm225YEHHlCXLl20bdu2DMFWkh5++GHt379faWlptrK9e/eqZMmSGYKtJL322mtq3ry57r//fqWmpiolJcW2Ljk52TZWFwDuJdy5BYB8qHDhwqpevbpdmYeHh4oWLWor79atm0qVKqWYmBhJUr9+/fTee+9pwIAB6t+/v/bt26exY8fqueeey7D/33//XQsXLtQvv/wiSapSpYocHR01c+ZM+fn5affu3apTp84d7iUA5D7CLQDco44cOSJHx/97Ay4gIEArVqzQoEGDFBISolKlSmnAgAEaNmyY3XbGGPXp00fjx4+Xh4eHJMnd3V1xcXGKjIxUUlKS3nvvPZUqVequ9gcAcoODMcbkdSPyWmJiory8vJSQkJBrk5c36zgmV/YD5KZvFo7I6yYAAJAjt5rXGHMLAAAAyyDcAgAAwDIYcwsgX6n52qi8bgJgZ9vwUXndBADZwJ1bAAAAWAbhFgAAAJZBuAUAAIBlEG4BAIDlTJkyRWXKlFGBAgVUr149/fjjj1nW/fTTT/XAAw/I29tbHh4eqlmzpubMmWNX5+2335avr698fX31zjvv2K3bvHmzateubfctf8g7fKAMAABYysKFCzV48GBNnz5d9erV08SJExUeHq49e/bI19c3Q30fHx+9/PLLqlKlilxdXbV06VL16NFDvr6+Cg8P1/bt2zVixAgtXbpUxhi1bt1azZo1U3BwsFJSUtS3b1/NmDFDzs7EqvyAO7cAAMBSxo8fr969e6tHjx6qWrWqpk+froIFC2rWrFmZ1m/UqJHatWunoKAglS9fXgMGDFBISIi+++47SdLu3bsVEhKixo0bq0mTJgoJCdHu3bslSePGjVODBg34uup8hHALAAAs48qVK9q6davCwsJsZY6OjgoLC9OmTZtuur0xRqtXr9aePXvUoEEDSVJwcLD27t2rI0eO6PDhw9q7d6+qV6+uAwcOKDY2Vq+99tod6w+yj3ALAAAs459//lFqaqpKlChhV16iRAnFx8dnuV1CQoIKFSokV1dXtWrVSpMnT1bTpk0lSUFBQRo7dqyaNm2qZs2aKSYmRkFBQXrmmWf01ltvacWKFapevbpq1aqlDRs23NH+4eYYHAIAAP71ChcurG3btun8+fNavXq1Bg8erHLlyqlRo0aSpL59+6pv3762+rNnz1bhwoUVGhqqypUra8uWLfrzzz/VqVMnHTx4UG5ubnnUExBuAQCAZRQrVkxOTk46ceKEXfmJEyfk5+eX5XaOjo6qUKGCJKlmzZratWuXYmJibOH2Wv/8849Gjx6tDRs2aPPmzapUqZIqVqyoihUrKjk5WXv37lVwcHCu9gu3jmEJAADAMlxdXVW7dm2tXr3aVpaWlqbVq1crNDT0lveTlpampKSkTNcNGjRIgwYNUunSpZWamqrk5GTbupSUFKWmpua8A7ht3LkFAACWMnjwYEVEROiBBx5Q3bp1NXHiRF24cEE9evSQJHXr1k2lSpVSTEyMJCkmJkYPPPCAypcvr6SkJH399deaM2eOpk2blmHfK1eu1N69ezV79mxJUp06dbR7924tW7ZMR48elZOTkypXrnz3OosMCLcAAMBSOnbsqL///lsjRoxQfHy8atasqeXLl9s+ZHbkyBE5Ov7fm9cXLlzQs88+qz///FPu7u6qUqWKPv74Y3Xs2NFuv5cuXVJUVJQWLlxo27506dKaPHmyevToITc3N82ePVvu7u53r7PIwMEYY/K6EblhypQpGjdunOLj41WjRg1NnjxZdevWvaVtExMT5eXlpYSEBHl6euZKe5p1HJMr+wFy0zcLR+R1E26q5muj8roJgJ1tw0fldRMA6NbzmiXG3KZ/E8nIkSP1888/q0aNGgoPD9fJkyfzumkAAAC4iywRbrP7TSQAAACwpnt+zG36N5FER0fbym72TSRJSUl2n4BMSEiQdPV2d25JSb6ca/sCcktuPsfvlNTLmX86Gcgr98J1I0lD1g3N6yYAdsY1eitX95d+Ld5sRO09H25v9E0k6d/7fL2YmBiNHj06Q3lAQMAdaSOQX3h9FpPXTQDuOV6vv5HXTQDuSTP0/h3Z77lz5+Tl5ZXl+ns+3OZEdHS0Bg8ebHuclpam06dPq2jRonJwcMjDluF6iYmJCggI0NGjR3Ptw37AvwHXDpB9XDf5mzFG586dk7+//w3r3fPhNiffROLm5pbha/G8vb3vVBORCzw9PXmhAXKAawfIPq6b/OtGd2zT3fMfKMutbyIBAADAve+ev3Mr3fybSAAAAPDvYIlwe7NvIsG9y83NTSNHjswwjATAjXHtANnHdWMNlvmGMgAAAOCeH3MLAAAApCPcAgAAwDIItwAAALAMwi0AAAAsg3CLTHXv3l0ODg5ycHCQi4uLypYtq6FDh+ry5cu2Ounrr18WLFggSVq3bp0cHBx09uzZTI8xatSoTLevUqWKJCk4OFh9+/bNdNs5c+bIzc1N//zzj60sPDxcTk5O2rJlS5b9eeMN+6/RXLJkie1b6a7tc2ZLmTJlbvn8If+49vfq6uqqChUqaMyYMUpJSbHVuZXnTmbXQlxc3A2fMw4ODjp06JBGjRqlmjVr2vZpjFFYWJjCw8MzHG/q1Kny9vbWn3/+ecN+pV9f6Uvx4sXVsmVL7dixI8v2X7s0b97cVqdMmTKaOHFipsc5dOhQln374Ycf9M4776hIkSJ2rw3pLl68KE9PT7377ru2svnz58vJyUmRkZFZ9qlatWpKTU21W+ft7a24uLgM/c5sWbdu3Q3PHXLHrbyuSlJqaqomTJig4OBgFShQQEWKFFGLFi30/fff222Xfj1d+9yUpLNnz2br93rtc8HT01N16tTR559/numxrl8KFChg17+2bdtmeZwyZcpkuo833nhDW7dutV0jmWnSpImeeOIJ2+M///xTrq6uql69epZ9KlCggA4fPmxX3rZtW3Xv3j1DvzNbRo0adYOzZi2EW2SpefPmOn78uP744w9NmDBB77//vkaOHGlXJzY2VsePH7dbbvRicL1q1apl2P67776TJPXs2VMLFizQpUuXMmwXGxurxx57TMWKFZMkHTlyRBs3blRUVJRmzZqV6bEKFCigN998U2fOnMl0/aRJk+zacX3/Mgs+uDekP5f37dun559/XqNGjdK4ceMk3dpzJ6troWPHjnbPmdDQUPXu3duuLCAgIMP+HBwcFBsbq82bN+v99//vu9cPHjyooUOHavLkySpduvQt9W3Pnj06fvy4VqxYoaSkJLVq1UpXrlzJtP3XLvPnz7/V0ydJWrVqVYZ91K5dW127dtWFCxf06aefZthm8eLFunLlip566ilb2cyZMzV06FDNnz8/00AsSX/88Yc++uijTNc99NBDdm148sknM/TvoYceylbfkHM3e101xqhTp04aM2aMBgwYoF27dmndunUKCAhQo0aNtGTJErv6zs7OWrVqldauXXtb7Up/7f7pp5/08MMPq0OHDhn+8fP09MzwnL4+PN7MmDFjMuyjf//+ql27tmrUqJHpa8qhQ4e0du1a9ezZ01YWFxenJ598UomJidq8eXOmx3JwcNCIESOybMu1bZg4cWKG/r3wwgvZ6tu9jHCLLLm5ucnPz08BAQFq27atwsLCtHLlSrs63t7e8vPzs1uu/c/3ZpydnTNsnx5Yn3rqKV26dEn/+9//7LY5ePCg1q1bZ/fCEBsbq9atW6tfv36aP39+poE4LCxMfn5+iomJybQtXl5edu24vn/Fixe/5X4hf0l/LgcGBqpfv34KCwvTF198IenWnjtZXQvu7u52zxlXV1cVLFjQrszJySnTNgUEBGjSpEl64YUXdPDgQRlj1LNnTzVr1kxdu3a95b75+vrKz89P999/vwYOHKijR49q9+7dmbb/2qVIkSLZOINS0aJFM+zDxcVFvr6+atOmTaZ/xGfNmqW2bdvKx8dH0tVrd+PGjXrxxRdVqVKlTAOxJPXv318jR45UUlJShnWurq52bXB3d8/QP1dX12z1DTl3s9fVTz75RIsXL9ZHH32kXr16qWzZsqpRo4ZmzJihxx57TL169dKFCxds9T08PPT000/rxRdfvK12pb92V6pUSa+++qpSUlIyBGYHB4cMz+nszo9fuHDhDPvw8PCQdPUGzcKFC3Xx4kW7beLi4lSyZEnbHWpjjGJjY9W1a1f997//1cyZMzM9VlRUlD7++GPt3Lkz0/XXtsHLyytD/woVKpStvt3LCLe4JTt37tTGjRvv6h+NYsWK6fHHH8/wRzMuLk6lS5dWs2bNJP3fC8NTTz2lKlWqqEKFClq8eHGG/Tk5OWns2LGaPHnyTd/yhbW5u7vrypUrt/zcuVZuXgsRERFq0qSJnn76ab333nvauXOn3Z3c7EhISLANCbrb4a5nz55as2aN3V2vP/74Qxs2bMjwT2irVq3k5eWlp556Kss/4gMHDlRKSoomT558x9uO23Oz19V58+apUqVKatOmTYZ1zz//vE6dOpXhpsmoUaO0Y8eOm16LtyIlJcX2PLvb10WXLl2UlJRk1w9jjGbPnq3u3bvb/vFdu3atLl68qLCwMD311FNasGCBXeBP9/DDD6t169a3Hfz/DQi3yNLSpUtVqFAhFShQQMHBwTp58qSGDBliV6dz584qVKiQ3XLkyJFbPsaOHTsybH/tONuePXtq3bp1OnjwoKT/e2GIiIiQo+PVp++qVat08eJF2/jFG/3RbNeunWrWrJlheAX+HYwxWrVqlVasWKHGjRvf8nPnVq6FnJoxY4Z27typgQMHasaMGdl+h6B06dIqVKiQvL29NW/ePD322GO2cevXt//aZezYsdk6zkMPPZRhH+nCw8Pl7++v2NhYW1lcXJwCAgLUpEkTSVJaWpri4uJsQxQ6deqk7777znZtX6tgwYIaOXKkYmJilJCQkK124u670evq3r17FRQUlOl26eV79+61K/f399eAAQP08ssv242Nz470v01ubm4aNGiQypQpoyeffNKuTkJCQobndIsWLbJ1nGHDhmXYx7fffitJ8vHxUbt27exu0Kxdu1aHDh1Sjx49bGUzZ85Up06d5OTkpOrVq6tcuXJatGhRpseLiYnR8uXLbcdA5gi3yNKjjz6qbdu2afPmzYqIiFCPHj3Uvn17uzoTJkzQtm3b7BZ/f/9bPkblypUzbD9mzBjb+qZNm6p06dK2P5qrV6/WkSNH7F4YZs2apY4dO8rZ+eq3SXfu3Fnff/+9Dhw4kOkx33zzTc2ePVu7du265Xbi3nZtOG3RooU6duyoUaNG3fJz51auhZzy9fXVM888o6CgoGyNV0/37bffauvWrYqLi1OlSpU0ffr0DHXS23/tktWHNbOycOHCDPtI5+TkpIiICMXFxckYo7S0NM2ePVs9evSw/RO6cuVKXbhwQS1btpR09Z2Zpk2bZjnOuWfPnipatKjefPPNbLUTeeNGr6s5+SLUYcOG6e+//87y+XEz6X+bli1bpqpVq+rDDz+0DY9JV7hw4QzP6Q8//DBbxxkyZEiGfTzwwAO29U8//bQ2bNhge02ZNWuWGjZsqAoVKki6+mG5Tz/91G5c+o1u0FStWlXdunXj7u1NOOd1A5B/eXh42C7AWbNmqUaNGpo5c6bd24x+fn62OjmR/un1rDg6Oqp79+6aPXu2Ro0apdjYWD366KMqV66cJOn06dP67LPPlJycrGnTptm2S01N1axZs/T6669n2GeDBg0UHh6u6Oho26dMYW2PPvqopk2bJldXV/n7+8vZ2Tlbz51buRZuh7Ozsy1gZ1fZsmXl7e2typUr6+TJk+rYsaM2bNhgV+fa9udUQEDADffx9NNPKyYmRmvWrFFaWpqOHj2a4e7U6dOn5e7ubitLS0vT9u3bNXr0aFsITufs7KzXX39d3bt3V1RU1G21HXdeVq+rlSpVyvJGQnp5pUqVMqzz9vZWdHS0Ro8erdatW2e7Pel/mypUqKDY2Fi1bNlSv//+u3x9fW11HB0db/u6KFas2A330aRJE913332Ki4vTkCFD9Omnn9oNPZo3b54uX76sevXq2crS/0Hcu3dvpudm9OjRqlSpUoYP4+H/cOcWt8TR0VEvvfSShg8fnukHbu6kHj166OjRo/r000/12Wef2QWKuXPnqnTp0vr111/t/nN+5513FBcXl2E6oXRvvPGGvvzyS23atOludQN5KD3c3XfffbYQmdPnTl5eCzcTGRmpnTt36rPPPrvrxy5fvrwaNmyoWbNmKTY2VmFhYQoMDJQknTp1Sp9//rkWLFhgd65/+eUXnTlzRt98802m+/zPf/6jatWqafTo0XezK8ihzF5XO3XqpH379unLL7/MUP+dd95R0aJF1bRp00z3179/fzk6OmrSpEm31a66deuqdu3amd7suNMcHR3Vo0cPzZ49W/PmzZOrq6s6dOhgWz9z5kw9//zzdtfFr7/+qvr162d51zogIEBRUVF66aWXsnyd+rfjzi1u2X/+8x8NGTJEU6ZMsU0pcvbsWcXHx9vVK1y4sO3TotLVcbWFCxe2PXZwcFCNGjUkXR3sf/32Dg4Odp9YLVu2rBo3bqw+ffrIzc3Nbm7AmTNnqkOHDhnmBgwICFB0dLSWL1+uVq1aZehLcHCwunTpYjf/Jv5dcvrckTK/Fm7m0qVLdm/lS1evlfLly+eo/ZkpWLCgevfurZEjR6pt27a2uUaTkpIyXGfOzs62mUkk6a+//srQvvRwKl0NqNfvw9vb2252lJ49e6p3796Sro65TTdnzhwVLVpUTz75pN38p5LUsmVLzZw5M8PcpuneeOONTOcDRv6T2etqp06dtGjRIkVERGjcuHFq0qSJEhMTNWXKFH3xxRdatGiR3d+LaxUoUECjR4/OdE7k7Bo4cKDatWunoUOHqlSpUpKu3iG9/jktXR0qlP5OQkJCQobromjRorYp/s6dO5dhHwULFpSnp6ftcY8ePTRmzBi99NJL6ty5s+3di23btunnn3/W3LlzM4yT79y5s8aMGaPXXnst03d1oqOj9cEHH+jgwYPq2LFjNs/Gv4ABMhEREWEef/zxDOUxMTGmePHi5vz580ZSpktMTIwxxpi1a9dmut7JyckYY8zIkSMzXe/m5pbhuPPmzTOSzLPPPmsr++mnn4wk8+OPP2bahxYtWph27dpl2Z+DBw8aV1dXk9VlIMl89tlnNztVyOcy+93f7nPHGPtrIV3Dhg3NgAEDMtTN6rnepEkT2/oaNWpkq1/p19eZM2fsyo8cOWKcnZ3NwoULbe3P7NiVK1e2bRMYGJhpnTlz5piDBw9mea3Pnz/f7tgXL140Xl5exsfHx1y+fNlWHhwcbHftXmvhwoXG1dXV/P3331n2qVmzZkaSiY2NzbB9Vr8f3Hm3+rqanJxsxo0bZ6pVq2ZcXV2Np6enCQ8PN999953dtrGxscbLy8uuLCUlxVStWtVIMmvXrr2ldmX22p2WlmaqVKli+vXrZztWVs/r48eP2/qX2fqePXsaY7K+bp555pkMbUp/Dl/7mhMVFWWqVq2aaR+OHz9uHB0dzeeff55ln8aOHWskmYiIiAzbZ3Yu/00cjMnBSG8AAAAgH2LMLQAAACyDcAsA+VCLFi0yzJ+Z0zlqAasYO3ZsltdFdueohXUxLAEA8qG//vory9kYfHx8MszZCfwbnD59WqdPn850nbu7u+3DYvh3I9wCAADAMhiWAAAAAMsg3AIAAMAyCLcAAACwDMItAAAALINwCwD5yLp16+Tg4KCzZ8/mdVMA4J5EuAWAXNS9e3c5ODjIwcFBLi4uKlu2rIYOHarLly/nddMA4F/BOa8bAABW07x5c8XGxio5OVlbt25VRESEHBwc9Oabb+Z10wDA8rhzCwC5zM3NTX5+fgoICFDbtm0VFhamlStXSpLS0tIUExOjsmXLyt3dXTVq1NDixYtvuL/vvvtO9evXl7u7uwICAvTcc8/pwoULkqSXXnpJ9erVy7BNjRo1NGbMGEnSli1b1LRpUxUrVkxeXl5q2LChfv75Z7v6Dg4O+vDDD9WuXTsVLFhQFStW1BdffGFX57ffflPr1q3l6empwoULq379+jpw4IBt/YcffqigoCAVKFBAVapU0dSpU7N/8gDgNhFuAeAO2rlzpzZu3ChXV1dJUkxMjD766CNNnz5dv/32mwYNGqSnnnpK69evz3T7AwcOqHnz5mrfvr22b9+uhQsX6rvvvlNUVJQkqUuXLvrxxx/tQuZvv/2m7du367///a8k6dy5c4qIiNB3332nH374QRUrVlTLli117tw5u2ONHj1aTz75pLZv366WLVuqS5cutm+D+uuvv9SgQQO5ublpzZo12rp1q55++mmlpKRIkubOnasRI0bo9ddf165duzR27Fi98sormj17du6eUAC4GQMAyDURERHGycnJeHh4GDc3NyPJODo6msWLF5vLly+bggULmo0bN9pt07NnT9O5c2djjDFr1641ksyZM2ds6/r06WNX/9tvvzWOjo7m0qVLxhhjatSoYcaMGWNbHx0dberVq5dlG1NTU03hwoXNl19+aSuTZIYPH257fP78eSPJLFu2zLbPsmXLmitXrmS6z/Lly5t58+bZlb366qsmNDQ0y3YAwJ3AmFsAyGWPPvqopk2bpgsXLmjChAlydnZW+/bt9dtvv+nixYtq2rSpXf0rV66oVq1ame7r119/1fbt2zV37lxbmTFGaWlpOnjwoIKCgtSlSxfNmjVLr7zyiowxmj9/vgYPHmyrf+LECQ0fPlzr1q3TyZMnlZqaqosXL+rIkSN2xwoJCbH97OHhIU9PT508eVKStG3bNtWvX18uLi4Z2njhwgUdOHBAPXv2VO/evW3lKSkp8vLyysaZA4DbR7gFgFzm4eGhChUqSJJmzZqlGjVqaObMmapevbok6auvvlKpUqXstnFzc8t0X+fPn9czzzyj5557LsO6++67T5LUuXNnDRs2TD///LMuXbqko0ePqmPHjrZ6EREROnXqlCZNmqTAwEC5ubkpNDRUV65csdvf9cHVwcFBaWlpkiR3d/cs+3v+/HlJ0gcffJBh/K+Tk1OW2wHAnUC4BYA7yNHRUS+99JIGDx6svXv3ys3NTUeOHFHDhg1vafv7779fv//+uy0sZ6Z06dJq2LCh5s6dq0uXLqlp06by9fW1rf/+++81depUtWzZUpJ09OhR/fPPP9nqR0hIiGbPnq3k5OQMIbhEiRLy9/fXH3/8oS5dumRrvwCQ2/hAGQDcYf/5z3/k5OSk999/Xy+88IIGDRqk2bNn68CBA/r55581efLkLD94NWzYMG3cuFFRUVHatm2b9u3bp88//9z2gbJ0Xbp00YIFC7Ro0aIMAbNixYqaM2eOdu3apc2bN6tLly43vBObmaioKCUmJqpTp0766aeftG/fPs2ZM0d79uyRdPXDaDExMXr33Xe1d+9e7dixQ7GxsRo/fny2jgMAt4twCwB3mLOzs6KiovTWW28pOjpar7zyimJiYhQUFKTmzZvrq6++UtmyZTPdNiQkROvXr9fevXtVv3591apVSyNGjJC/v79dvQ4dOujUqVO6ePGi2rZta7du5syZOnPmjO6//3517dpVzz33nN2d3VtRtGhRrVmzRufPn1fDhg1Vu3ZtffDBB7a7uL169dKHH36o2NhYBQcHq2HDhoqLi8uyXwBwpzgYY0xeNwIAAADIDdy5BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYBuEWAAAAlkG4BQAAgGUQbgEAAGAZhFsAAABYxv8DmA6Ghk2ZHiQAAAAASUVORK5CYII=",
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"\n",
"# Calculate counts and percentages\n",
"counts = df_eval['relevance'].value_counts()\n",
"print(counts)\n",
"percentages = counts / counts.sum() * 100\n",
"\n",
"# Create bar plot\n",
"plt.figure(figsize=(8, 5))\n",
"ax = sns.countplot(data=df_eval, x='relevance', palette='viridis')\n",
"\n",
"# Add percentage labels on top of the bars\n",
"for p in ax.patches:\n",
" height = p.get_height()\n",
" ax.annotate(f'{height / counts.sum() * 100:.1f}%', \n",
" (p.get_x() + p.get_width() / 2., height), \n",
" ha='center', va='bottom')\n",
"\n",
"plt.title('Distribution of Relevance For mixtral-8x7b-32768')\n",
"plt.xlabel('Relevance')\n",
"plt.ylabel('Count')\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(s)"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>answer</th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>relevance</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Mental illnesses can significantly impact a pe...</td>\n",
" <td>1590140</td>\n",
" <td>How do mental illnesses affect a person's dail...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer is highly relevant to the...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Sure, I'd be happy to help answer your questio...</td>\n",
" <td>1590140</td>\n",
" <td>What are some examples of serious mental illne...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer provides a detailed list ...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>Mental illness is not a reflection of a person...</td>\n",
" <td>1590140</td>\n",
" <td>Why is it a misconception to associate mental ...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer directly addresses the qu...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>3</th>\n",
" <td>Mental illnesses are treated using a variety o...</td>\n",
" <td>1590140</td>\n",
" <td>How are mental illnesses treated, and what is ...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer fully addresses the quest...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>4</th>\n",
" <td>Yes, a person with a mental illness can become...</td>\n",
" <td>1590140</td>\n",
" <td>Can a person with mental illness become indepe...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer directly addresses the qu...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" answer id \\\n",
"0 Mental illnesses can significantly impact a pe... 1590140 \n",
"1 Sure, I'd be happy to help answer your questio... 1590140 \n",
"2 Mental illness is not a reflection of a person... 1590140 \n",
"3 Mental illnesses are treated using a variety o... 1590140 \n",
"4 Yes, a person with a mental illness can become... 1590140 \n",
"\n",
" question relevance \\\n",
"0 How do mental illnesses affect a person's dail... RELEVANT \n",
"1 What are some examples of serious mental illne... RELEVANT \n",
"2 Why is it a misconception to associate mental ... RELEVANT \n",
"3 How are mental illnesses treated, and what is ... RELEVANT \n",
"4 Can a person with mental illness become indepe... RELEVANT \n",
"\n",
" explanation \n",
"0 The generated answer is highly relevant to the... \n",
"1 The generated answer provides a detailed list ... \n",
"2 The generated answer directly addresses the qu... \n",
"3 The generated answer fully addresses the quest... \n",
"4 The generated answer directly addresses the qu... "
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Filter relevant entries\n",
"relevant_answers = df_eval[df_eval['relevance'] == 'RELEVANT']\n",
"relevant_answers.head(5)\n"
]
},
{
"cell_type": "code",
"execution_count": 80,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>answer</th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>relevance</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>208</th>\n",
" <td>The context provided does not include informat...</td>\n",
" <td>3284724</td>\n",
" <td>What are the different income levels for provi...</td>\n",
" <td>NON_RELEVANT</td>\n",
" <td>The generated answer does not provide any info...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" answer id \\\n",
"208 The context provided does not include informat... 3284724 \n",
"\n",
" question relevance \\\n",
"208 What are the different income levels for provi... NON_RELEVANT \n",
"\n",
" explanation \n",
"208 The generated answer does not provide any info... "
]
},
"execution_count": 80,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"# Filter non-relevant entries\n",
"non_relevant_answers = df_eval[df_eval['relevance'] == 'NON_RELEVANT']\n",
"non_relevant_answers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"non_relevant_answers[['question','answer','explanation']]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"# Set display options to show full content\n",
"pd.set_option('display.max_colwidth', None)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Analysing Partly Relevant Answers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"partly_relevant_answers = df_eval[df_eval['relevance'] == 'PARTLY_RELEVANT']\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"partly_relevant_answers[['question','answer','explanation']]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#df_eval.to_csv('../dataset/rag-eval-mistral.csv', index=False)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Evaluating Mistralai Model"
]
},
{
"cell_type": "code",
"execution_count": 83,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "0e3ded5a907f4fe58c4fbe4e590c9459",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/366 [00:01<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"evaluations_llama = []\n",
"\n",
"for record in tqdm(ground_truth):\n",
" question = record['question']\n",
" answer_llm = rag(question, model='llama3-70b-8192') \n",
"\n",
" prompt = prompt2_template.format(\n",
" question=question,\n",
" answer_llm=answer_llm\n",
" )\n",
"\n",
" evaluation = llm(prompt,model='llama3-70b-8192')\n",
" evaluation = json.loads(evaluation)\n",
" \n",
" evaluations_llama.append((record, answer_llm, evaluation))"
]
},
{
"cell_type": "code",
"execution_count": 84,
"metadata": {},
"outputs": [],
"source": [
"df_eval_llama = pd.DataFrame(evaluations_llama, columns=['record', 'answer', 'evaluation'])\n",
"\n",
"df_eval_llama['id'] = df_eval_llama.record.apply(lambda d: d['id'])\n",
"df_eval_llama['question'] = df_eval_llama.record.apply(lambda d: d['question'])\n",
"\n",
"df_eval_llama['relevance'] = df_eval_llama.evaluation.apply(lambda d: d['Relevance'])\n",
"df_eval_llama['explanation'] = df_eval_llama.evaluation.apply(lambda d: d['Explanation'])\n",
"\n",
"del df_eval_llama['record']\n",
"del df_eval_llama['evaluation']"
]
},
{
"cell_type": "code",
"execution_count": 85,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>answer</th>\n",
" <th>id</th>\n",
" <th>question</th>\n",
" <th>relevance</th>\n",
" <th>explanation</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>0</th>\n",
" <td>Based on the provided context, mental illnesse...</td>\n",
" <td>1590140</td>\n",
" <td>How do mental illnesses affect a person's dail...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer directly addresses the qu...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>1</th>\n",
" <td>Based on the provided context, some examples o...</td>\n",
" <td>1590140</td>\n",
" <td>What are some examples of serious mental illne...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer directly addresses the qu...</td>\n",
" </tr>\n",
" <tr>\n",
" <th>2</th>\n",
" <td>It is a misconception to associate mental illn...</td>\n",
" <td>1590140</td>\n",
" <td>Why is it a misconception to associate mental ...</td>\n",
" <td>RELEVANT</td>\n",
" <td>The generated answer directly addresses the qu...</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" answer id \\\n",
"0 Based on the provided context, mental illnesse... 1590140 \n",
"1 Based on the provided context, some examples o... 1590140 \n",
"2 It is a misconception to associate mental illn... 1590140 \n",
"\n",
" question relevance \\\n",
"0 How do mental illnesses affect a person's dail... RELEVANT \n",
"1 What are some examples of serious mental illne... RELEVANT \n",
"2 Why is it a misconception to associate mental ... RELEVANT \n",
"\n",
" explanation \n",
"0 The generated answer directly addresses the qu... \n",
"1 The generated answer directly addresses the qu... \n",
"2 The generated answer directly addresses the qu... "
]
},
"execution_count": 85,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df_eval_llama.head(3)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"df_eval_llama.to_csv('../dataset/rag_eval_llama.csv', index=False)\n"
]
},
{
"cell_type": "code",
"execution_count": 86,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"relevance\n",
"RELEVANT 317\n",
"NON_RELEVANT 31\n",
"PARTLY_RELEVANT 18\n",
"Name: count, dtype: int64\n"
]
},
{
"name": "stderr",
"output_type": "stream",
"text": [
"C:\\Users\\USER\\AppData\\Local\\Temp\\ipykernel_16892\\4118569142.py:8: FutureWarning: \n",
"\n",
"Passing `palette` without assigning `hue` is deprecated and will be removed in v0.14.0. Assign the `x` variable to `hue` and set `legend=False` for the same effect.\n",
"\n",
" ax = sns.countplot(data=df_eval, x='relevance', palette='viridis')\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAArcAAAHWCAYAAABt3aEVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABVv0lEQVR4nO3deVwV9eL/8fcBAREF3ABRRNxRQU3NaHFFcc/Sm3pN0XANLLXUi9fcMqms1Kw0S4FM0/S2est9yzQzu+SSe26piKmAK+v8/ujH+XoCFBAFp9fz8ZjHw/OZz3zm8xlmDm+Hz5ljMQzDEAAAAGACdkXdAQAAAKCwEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BE5k8ebIsFss92VerVq3UqlUr6+tNmzbJYrFoxYoV92T/AwYMULVq1e7JvgrqypUrGjRokLy8vGSxWDRy5Mh7uv+//oxQ9HI6by0WiyZPnlwk/QHMiHALFFMxMTGyWCzWpWTJkvL29lZISIjefvttXb58uVD2c+bMGU2ePFlxcXGF0l5hKs59y4vp06crJiZGw4cP16JFi9SvX79c61arVs3m5+3i4qIHH3xQH3300T3s8d9Dq1atbI71zcuBAweKunsA7lCJou4AgFubOnWq/Pz8lJaWpvj4eG3atEkjR47UW2+9pa+++kqBgYHWuhMmTNC//vWvfLV/5swZTZkyRdWqVVOjRo3yvN2aNWvytZ+CuFXfPvjgA2VmZt71PtyJDRs26KGHHtKkSZPyVL9Ro0Z64YUXJElnz57Vhx9+qNDQUKWkpGjw4MF3s6t/O1WqVFFUVFS2cm9v7yLoDYDCRLgFirmOHTuqadOm1teRkZHasGGDunTpom7dumn//v1ydnaWJJUoUUIlStzdy/ratWsqVaqUHB0d7+p+bsfBwaFI958XCQkJqlevXp7rV65cWU8//bT19YABA1S9enXNnDmTcFvI3NzcbI51YTEMQzdu3LBekwDuPaYlAPehNm3a6KWXXtKJEyf08ccfW8tzmnO7du1aPfroo3J3d1fp0qVVp04djR8/XtKf82SbNWsmSRo4cKD1T7MxMTGS/vzzbYMGDbRr1y61aNFCpUqVsm6b23zOjIwMjR8/Xl5eXnJxcVG3bt106tQpmzrVqlXTgAEDsm17c5u361tOcxevXr2qF154QT4+PnJyclKdOnX0xhtvyDAMm3oWi0URERH64osv1KBBAzk5Oal+/fpatWpVzgf8LxISEhQWFiZPT0+VLFlSDRs2VGxsrHV91vzjY8eO6b///a+178ePH89T+1kqVqyounXr6ujRozblmZmZmjVrlurXr6+SJUvK09NTQ4cO1aVLl27bZkpKiiZNmqSaNWvKyclJPj4+Gjt2rFJSUqx1GjRooNatW2fbNjMzU5UrV1bPnj2tZW+88YYefvhhlS9fXs7OzmrSpEmO867zc8xPnz6tsLAweXt7y8nJSX5+fho+fLhSU1OtdRITEzVy5Ejrz7pmzZp67bXXCu1ufnp6ul5++WXVqFFDTk5OqlatmsaPH29znKQ/z+UuXbpo9erVatq0qZydnfX+++/f0b5PnDihZ599VnXq1JGzs7PKly+vf/zjH9nOn6ypS1u3btVzzz2nihUryt3dXUOHDlVqaqoSExPVv39/lS1bVmXLltXYsWOzXQt5/fkB9xPu3AL3qX79+mn8+PFas2ZNrnf19u3bpy5duigwMFBTp06Vk5OTjhw5ou+//16S5O/vr6lTp2rixIkaMmSIHnvsMUnSww8/bG3jwoUL6tixo3r37q2nn35anp6et+zXK6+8IovFonHjxikhIUGzZs1ScHCw4uLi8nU3Ky99u5lhGOrWrZs2btyosLAwNWrUSKtXr9aYMWN0+vRpzZw506b+1q1b9dlnn+nZZ59VmTJl9Pbbb6tHjx46efKkypcvn2u/rl+/rlatWunIkSOKiIiQn5+fli9frgEDBigxMVHPP/+8/P39tWjRIo0aNUpVqlSxTjWoWLFinscv/Rmwfv/9d5UtW9amfOjQoYqJidHAgQP13HPP6dixY3rnnXf0v//9T99//32ud7UzMzPVrVs3bd26VUOGDJG/v7/27NmjmTNn6tChQ/riiy8kSb169dLkyZMVHx8vLy8vm2N25swZ9e7d21o2e/ZsdevWTX379lVqaqqWLl2qf/zjH1q5cqU6d+6c72N+5swZPfjgg0pMTNSQIUNUt25dnT59WitWrNC1a9fk6Oioa9euqWXLljp9+rSGDh2qqlWratu2bYqMjNTZs2c1a9as2x7bjIwM/fHHHzZlJUuWVOnSpSVJgwYNUmxsrHr27KkXXnhBO3bsUFRUlPbv36/PP//cZruDBw+qT58+Gjp0qAYPHqw6dercdv+3snPnTm3btk29e/dWlSpVdPz4cc2dO1etWrXSr7/+qlKlStnUHzFihLy8vDRlyhT98MMPmj9/vtzd3bVt2zZVrVpV06dP1zfffKMZM2aoQYMG6t+/v3Xb/Pz8gPuGAaBYio6ONiQZO3fuzLWOm5ub0bhxY+vrSZMmGTdf1jNnzjQkGefPn8+1jZ07dxqSjOjo6GzrWrZsaUgy5s2bl+O6li1bWl9v3LjRkGRUrlzZSE5OtpZ/+umnhiRj9uzZ1jJfX18jNDT0tm3eqm+hoaGGr6+v9fUXX3xhSDKmTZtmU69nz56GxWIxjhw5Yi2TZDg6OtqU/fLLL4YkY86cOdn2dbNZs2YZkoyPP/7YWpaammoEBQUZpUuXthm7r6+v0blz51u2d3Pd9u3bG+fPnzfOnz9v7Nmzx+jXr58hyQgPD7fW++677wxJxuLFi222X7VqVbbyvx7PRYsWGXZ2dsZ3331ns+28efMMScb3339vGIZhHDx4MMdj8eyzzxqlS5c2rl27Zi27+d9Zx6JBgwZGmzZtbMrzesz79+9v2NnZ5XjeZ2ZmGoZhGC+//LLh4uJiHDp0yGb9v/71L8Pe3t44efJktm1vlnVe/3XJOifj4uIMScagQYNstnvxxRcNScaGDRusZb6+voYkY9WqVbfcZ5a/nreG8eexmTRpkvX1X4+pYRjG9u3bDUnGRx99ZC3Leo8ICQmxHhvDMIygoCDDYrEYw4YNs5alp6cbVapUsTkfctpXbj8/4H7CtATgPla6dOlbPjXB3d1dkvTll18W+M+1Tk5OGjhwYJ7r9+/fX2XKlLG+7tmzpypVqqRvvvmmQPvPq2+++Ub29vZ67rnnbMpfeOEFGYahb7/91qY8ODhYNWrUsL4ODAyUq6urfvvtt9vux8vLS3369LGWOTg46LnnntOVK1e0efPmAo9hzZo1qlixoipWrKiAgAAtWrRIAwcO1IwZM6x1li9fLjc3N7Vr105//PGHdWnSpIlKly6tjRs35tr+8uXL5e/vr7p169ps26ZNG0myblu7dm01atRIy5Yts26bkZGhFStWqGvXrjZ34G/+96VLl5SUlKTHHntMP//8c7b93+6YZ2Zm6osvvlDXrl1t5plnyZpys3z5cj322GMqW7aszTiCg4OVkZGhLVu23PpA68/pBGvXrrVZxo4dK0nWc3X06NE222Tdgf/vf/9rU+7n56eQkJDb7jOvbj6maWlpunDhgmrWrCl3d/ccj2tYWJjNdKTmzZvLMAyFhYVZy+zt7dW0adNs53d+fn7A/YJpCcB97MqVK/Lw8Mh1fa9evfThhx9q0KBB+te//qW2bdvqySefVM+ePWVnl7f/21auXDlfHx6rVauWzWuLxaKaNWvme75pfp04cULe3t42wVr6c3pD1vqbVa1aNVsbZcuWve281RMnTqhWrVrZjl9u+8mP5s2ba9q0acrIyNDevXs1bdo0Xbp0yeb4Hz58WElJSbn+3BMSEnJt//Dhw9q/f3+u0yNu3rZXr14aP368Tp8+rcqVK2vTpk1KSEhQr169bLZZuXKlpk2bpri4OJv5qDk9b/l2x/z8+fNKTk5WgwYNch1D1jh2796dp3HkxsXFRcHBwTmuO3HihOzs7FSzZk2bci8vL7m7u2f7Gfv5+d12f/lx/fp1RUVFKTo6WqdPn7aZJ5uUlJSt/l+Pq5ubmyTJx8cnW/lfz+/8/PyA+wXhFrhP/f7770pKSsr2C/hmzs7O2rJlizZu3Kj//ve/WrVqlZYtW6Y2bdpozZo1sre3v+1+7sanvnP7xZmRkZGnPhWG3PZj/OUDN/dShQoVrIErJCREdevWVZcuXTR79mzrXcTMzEx5eHho8eLFObZxq3m9mZmZCggI0FtvvZXj+pvDUK9evRQZGanly5dr5MiR+vTTT+Xm5qYOHTpY63z33Xfq1q2bWrRooffee0+VKlWSg4ODoqOjtWTJkmztF9Yxz8zMVLt27ax3Wv+qdu3a+WovN3kNeIV9jYwYMULR0dEaOXKkgoKC5ObmJovFot69e+f4F5jcjmtO5Tcf6/z+/ID7BeEWuE8tWrRIkm7751A7Ozu1bdtWbdu21VtvvaXp06fr3//+tzZu3Kjg4OBCv0Nz+PBhm9eGYejIkSM2z+MtW7asEhMTs2174sQJVa9e3fo6P33z9fXVunXrdPnyZZu7t1kP5ff19c1zW7fbz+7du5WZmWlz97aw9yNJnTt3VsuWLTV9+nQNHTpULi4uqlGjhtatW6dHHnkk36GqRo0a+uWXX9S2bdvbHls/Pz89+OCDWrZsmSIiIvTZZ5+pe/fucnJystb5z3/+o5IlS2r16tU25dHR0fkb6P9XsWJFubq6au/evbcdx5UrV3K983qnfH19lZmZqcOHD1vvyEvSuXPnlJiYWKg/45ysWLFCoaGhevPNN61lN27cyPGauROF/fMDigvm3AL3oQ0bNujll1+Wn5+f+vbtm2u9ixcvZivL+jKErD9Buri4SFKh/eL86KOPbOYBr1ixQmfPnlXHjh2tZTVq1NAPP/xg82inlStXZntkWH761qlTJ2VkZOidd96xKZ85c6YsFovN/u9Ep06dFB8fbzMfNT09XXPmzFHp0qXVsmXLQtlPlnHjxunChQv64IMPJElPPfWUMjIy9PLLL2erm56efstj9dRTT+n06dPWtm52/fp1Xb161aasV69e+uGHH7Rw4UL98ccf2aYk2Nvby2KxKCMjw1p2/Phx61MX8svOzk7du3fX119/rZ9++inb+qy7jk899ZS2b9+u1atXZ6uTmJio9PT0Au0/S6dOnSQp21MXsu543+2nCNjb22e7mz1nzhyb41xY+ynMnx9QXHDnFijmvv32Wx04cEDp6ek6d+6cNmzYoLVr18rX11dfffWVSpYsmeu2U6dO1ZYtW9S5c2f5+voqISFB7733nqpUqaJHH31U0p9B093dXfPmzVOZMmXk4uKi5s2bF3geYbly5fToo49q4MCBOnfunGbNmqWaNWvaPK5s0KBBWrFihTp06KCnnnpKR48e1ccff2zzYaP89q1r165q3bq1/v3vf+v48eNq2LCh1qxZoy+//FIjR47M1nZBDRkyRO+//74GDBigXbt2qVq1alqxYoW+//57zZo1K9uc3zvVsWNHNWjQQG+99ZbCw8PVsmVLDR06VFFRUYqLi1P79u3l4OCgw4cPa/ny5Zo9e7bNc2hv1q9fP3366acaNmyYNm7cqEceeUQZGRk6cOCAPv30U+uzWrM89dRTevHFF/Xiiy+qXLly2e6Udu7cWW+99ZY6dOigf/7zn0pISNC7776rmjVravfu3QUa7/Tp07VmzRq1bNnS+riys2fPavny5dq6davc3d01ZswYffXVV+rSpYsGDBigJk2a6OrVq9qzZ49WrFih48ePq0KFCgXavyQ1bNhQoaGhmj9/vhITE9WyZUv9+OOPio2NVffu3XN8BnBh6tKlixYtWiQ3NzfVq1dP27dv17p16275iLqCuBs/P6BYKLLnNAC4pazH/GQtjo6OhpeXl9GuXTtj9uzZNo+cyvLXR4GtX7/eePzxxw1vb2/D0dHR8Pb2Nvr06ZPtEUpffvmlUa9ePaNEiRI2j95q2bKlUb9+/Rz7l9ujwD755BMjMjLS8PDwMJydnY3OnTsbJ06cyLb9m2++aVSuXNlwcnIyHnnkEeOnn37K1uat+pbTI5UuX75sjBo1yvD29jYcHByMWrVqGTNmzLB5TJJhGNker5Ult0eU/dW5c+eMgQMHGhUqVDAcHR2NgICAHB9Xlt9HgeVWNyYmJtsj0ebPn280adLEcHZ2NsqUKWMEBAQYY8eONc6cOWOtk9PxTE1NNV577TWjfv36hpOTk1G2bFmjSZMmxpQpU4ykpKRs+37kkUdyfCxWlgULFhi1atUynJycjLp16xrR0dHZzkPDyN8xP3HihNG/f3+jYsWKhpOTk1G9enUjPDzcSElJsda5fPmyERkZadSsWdNwdHQ0KlSoYDz88MPGG2+8YaSmpubY15uPS27ndZa0tDRjypQphp+fn+Hg4GD4+PgYkZGRxo0bN7L1P68/Y8PI26PALl26ZD2/SpcubYSEhBgHDhzIdqxye1xg1vH/6yMAQ0NDDRcXF5uyvP78gPuJxTCK8NMTAAAAQCFizi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0+BLHPTn95SfOXNGZcqUKfSvIgUAAMCdMwxDly9flre3t83Xn/8V4VbSmTNn5OPjU9TdAAAAwG2cOnVKVapUyXU94Vayfl3mqVOn5OrqWsS9AQAAwF8lJyfLx8fntl9zTriVrFMRXF1dCbcAAADF2O2mkPKBMgAAAJgG4RYAAACmQbgFAACAaRBuUeguX76skSNHytfXV87Oznr44Ye1c+dO6/oBAwbIYrHYLB06dLhlm1u2bFHXrl3l7e0ti8WiL774IludN954Qx4eHvLw8NCbb75ps27Hjh1q0qSJ0tPTC2WMAACgeOIDZSh0gwYN0t69e7Vo0SJ5e3vr448/VnBwsH799VdVrlxZktShQwdFR0dbt3Fycrplm1evXlXDhg31zDPP6Mknn8y2fvfu3Zo4caJWrlwpwzDUpUsXtW/fXgEBAUpPT9ewYcM0f/58lSjBKQ8AgJnxmx6F6vr16/rPf/6jL7/8Ui1atJAkTZ48WV9//bXmzp2radOmSfozzHp5eeW53Y4dO6pjx465rj9w4IACAwPVpk0bSVJgYKAOHDiggIAAzZgxQy1atFCzZs3uYGQAAOB+QLhFoUpPT1dGRoZKlixpU+7s7KytW7daX2/atEkeHh4qW7as2rRpo2nTpql8+fIF3m9AQIAOHTqkkydPyjAMHTp0SA0aNNDRo0cVHR2tXbt2FbhtAABw/2DOLQpVmTJlFBQUpJdffllnzpxRRkaGPv74Y23fvl1nz56V9OeUhI8++kjr16/Xa6+9ps2bN6tjx47KyMgo8H79/f01ffp0tWvXTu3bt1dUVJT8/f01dOhQvf7661q9erUaNGigxo0ba8uWLYU1XAAAUMxw5xaFbtGiRXrmmWdUuXJl2dvb64EHHlCfPn2sd0979+5trRsQEKDAwEDVqFFDmzZtUtu2bQu832HDhmnYsGHW17GxsdawXadOHe3cuVO///67evfurWPHjt12ni8AALj/FOmd27lz5yowMND6zWBBQUH69ttvretbtWqV7VP1N4cXSTp58qQ6d+6sUqVKycPDQ2PGjOET8UWsRo0a2rx5s65cuaJTp07pxx9/VFpamqpXr55j/erVq6tChQo6cuRIofXhjz/+0JQpUzRnzhzt2LFDtWvXVq1atdS6dWulpaXp0KFDhbYvAABQfBTpndsqVaro1VdfVa1atWQYhmJjY/X444/rf//7n+rXry9JGjx4sKZOnWrdplSpUtZ/Z2RkqHPnzvLy8tK2bdt09uxZ9e/fXw4ODpo+ffo9Hw9subi4yMXFRZcuXdLq1av1+uuv51jv999/14ULF1SpUqVC2/eoUaM0atQoValSRTt37lRaWpp1Xda8YAAAYD5FGm67du1q8/qVV17R3Llz9cMPP1jDbalSpXL9VP2aNWv066+/at26dfL09FSjRo308ssva9y4cZo8ebIcHR3v+hiQ3erVq2UYhurUqaMjR45ozJgxqlu3rgYOHKgrV65oypQp6tGjh7y8vHT06FGNHTtWNWvWVEhIiLWNtm3b6oknnlBERIQk6cqVKzZ3do8dO6a4uDiVK1dOVatWtdn/2rVrdejQIcXGxkqSmjVrpgMHDujbb7/VqVOnZG9vrzp16tyDIwEAAO61YvOBsoyMDC1dulRXr15VUFCQtXzx4sWqUKGCGjRooMjISF27ds26bvv27QoICJCnp6e1LCQkRMnJydq3b1+u+0pJSVFycrLNgsKTlJSk8PBw1a1bV/3799ejjz6q1atXy8HBQfb29tq9e7e6deum2rVrKywsTE2aNNF3331nMwf26NGj+uOPP6yvf/rpJzVu3FiNGzeWJI0ePVqNGzfWxIkTbfZ9/fp1RURE6P3335ed3Z+nd5UqVTRnzhwNHDhQr7zyimJjY+Xs7HwPjgQAALjXLIZhGEXZgT179igoKEg3btxQ6dKltWTJEnXq1EmSNH/+fPn6+srb21u7d+/WuHHj9OCDD+qzzz6TJA0ZMkQnTpzQ6tWrre1du3ZNLi4u+uabb3J9LurkyZM1ZcqUbOVJSUlydXW9C6MEAADAnUhOTpabm9tt81qRPy2hTp06iouLU1JSklasWKHQ0FBt3rxZ9erV05AhQ6z1AgICVKlSJbVt21ZHjx5VjRo1CrzPyMhIjR492vo6OTlZPj4+dzQOAAAAFL0iD7eOjo6qWbOmJKlJkybauXOnZs+erffffz9b3ebNm0uSjhw5oho1asjLy0s//vijTZ1z585J0i2//crJyemuPwaqfa+pt68E3GNrlk28fSUAAO5jxWbObZbMzEylpKTkuC4uLk6SrJ+qDwoK0p49e5SQkGCts3btWrm6uqpevXp3va8AAAAoXor0zm1kZKQ6duyoqlWr6vLly1qyZIk2bdqk1atX6+jRo9b5t+XLl9fu3bs1atQotWjRQoGBgZKk9u3bq169eurXr59ef/11xcfHa8KECQoPD+cB/QAAAH9DRRpuExIS1L9/f509e1Zubm4KDAzU6tWr1a5dO506dUrr1q3TrFmzdPXqVfn4+KhHjx6aMGGCdXt7e3utXLlSw4cPV1BQkFxcXBQaGmrzXFwAAAD8fRRpuF2wYEGu63x8fLR58+bbtuHr66tvvvmmMLsFAACA+1Sxm3MLAAAAFBThFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZRpOF27ty5CgwMlKurq1xdXRUUFKRvv/3Wuv7GjRsKDw9X+fLlVbp0afXo0UPnzp2zaePkyZPq3LmzSpUqJQ8PD40ZM0bp6en3eigAAAAoBoo03FapUkWvvvqqdu3apZ9++klt2rTR448/rn379kmSRo0apa+//lrLly/X5s2bdebMGT355JPW7TMyMtS5c2elpqZq27Ztio2NVUxMjCZOnFhUQwIAAEARshiGYRR1J25Wrlw5zZgxQz179lTFihW1ZMkS9ezZU5J04MAB+fv7a/v27XrooYf07bffqkuXLjpz5ow8PT0lSfPmzdO4ceN0/vx5OTo65mmfycnJcnNzU1JSklxdXQtlHO17TS2UdoDCtGYZ//EDANyf8prXis2c24yMDC1dulRXr15VUFCQdu3apbS0NAUHB1vr1K1bV1WrVtX27dslSdu3b1dAQIA12EpSSEiIkpOTrXd/c5KSkqLk5GSbBQAAAPe/Ig+3e/bsUenSpeXk5KRhw4bp888/V7169RQfHy9HR0e5u7vb1Pf09FR8fLwkKT4+3ibYZq3PWpebqKgoubm5WRcfH5/CHRQAAACKRJGH2zp16iguLk47duzQ8OHDFRoaql9//fWu7jMyMlJJSUnW5dSpU3d1fwAAALg3ShR1BxwdHVWzZk1JUpMmTbRz507Nnj1bvXr1UmpqqhITE23u3p47d05eXl6SJC8vL/3444827WU9TSGrTk6cnJzk5ORUyCMBAABAUSvyO7d/lZmZqZSUFDVp0kQODg5av369dd3Bgwd18uRJBQUFSZKCgoK0Z88eJSQkWOusXbtWrq6uqlev3j3vOwAAAIpWkd65jYyMVMeOHVW1alVdvnxZS5Ys0aZNm7R69Wq5ubkpLCxMo0ePVrly5eTq6qoRI0YoKChIDz30kCSpffv2qlevnvr166fXX39d8fHxmjBhgsLDw7kzCwAA8DdUpOE2ISFB/fv319mzZ+Xm5qbAwECtXr1a7dq1kyTNnDlTdnZ26tGjh1JSUhQSEqL33nvPur29vb1Wrlyp4cOHKygoSC4uLgoNDdXUqTyGCwAA4O+o2D3ntijwnFv8XfCcWwDA/eq+e84tAAAAcKcItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDQItwAAADANwi0AAABMg3ALAAAA0yDcAgAAwDSKNNxGRUWpWbNmKlOmjDw8PNS9e3cdPHjQpk6rVq1ksVhslmHDhtnUOXnypDp37qxSpUrJw8NDY8aMUXp6+r0cCgAAAIqBEkW5882bNys8PFzNmjVTenq6xo8fr/bt2+vXX3+Vi4uLtd7gwYM1depU6+tSpUpZ/52RkaHOnTvLy8tL27Zt09mzZ9W/f385ODho+vTp93Q8AAAAKFpFGm5XrVpl8zomJkYeHh7atWuXWrRoYS0vVaqUvLy8cmxjzZo1+vXXX7Vu3Tp5enqqUaNGevnllzVu3DhNnjxZjo6Od3UMAAAAKD6K1ZzbpKQkSVK5cuVsyhcvXqwKFSqoQYMGioyM1LVr16zrtm/froCAAHl6elrLQkJClJycrH379uW4n5SUFCUnJ9ssAAAAuP8V6Z3bm2VmZmrkyJF65JFH1KBBA2v5P//5T/n6+srb21u7d+/WuHHjdPDgQX322WeSpPj4eJtgK8n6Oj4+Psd9RUVFacqUKXdpJAAAACgqxSbchoeHa+/evdq6datN+ZAhQ6z/DggIUKVKldS2bVsdPXpUNWrUKNC+IiMjNXr0aOvr5ORk+fj4FKzjAAAAKDaKxbSEiIgIrVy5Uhs3blSVKlVuWbd58+aSpCNHjkiSvLy8dO7cOZs6Wa9zm6fr5OQkV1dXmwUAAAD3vyINt4ZhKCIiQp9//rk2bNggPz+/224TFxcnSapUqZIkKSgoSHv27FFCQoK1ztq1a+Xq6qp69erdlX4DAACgeCrSaQnh4eFasmSJvvzyS5UpU8Y6R9bNzU3Ozs46evSolixZok6dOql8+fLavXu3Ro0apRYtWigwMFCS1L59e9WrV0/9+vXT66+/rvj4eE2YMEHh4eFycnIqyuEBAADgHivSO7dz585VUlKSWrVqpUqVKlmXZcuWSZIcHR21bt06tW/fXnXr1tULL7ygHj166Ouvv7a2YW9vr5UrV8re3l5BQUF6+umn1b9/f5vn4gIAAODvoUjv3BqGccv1Pj4+2rx5823b8fX11TfffFNY3QIAAMB9qlh8oAwAAAAoDIRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmAbhFgAAAKZBuAUAAIBpEG4BAABgGoRbAAAAmEaRhtuoqCg1a9ZMZcqUkYeHh7p3766DBw/a1Llx44bCw8NVvnx5lS5dWj169NC5c+ds6pw8eVKdO3dWqVKl5OHhoTFjxig9Pf1eDgUAAADFQJGG282bNys8PFw//PCD1q5dq7S0NLVv315Xr1611hk1apS+/vprLV++XJs3b9aZM2f05JNPWtdnZGSoc+fOSk1N1bZt2xQbG6uYmBhNnDixKIYEAACAImQxDMMo6k5kOX/+vDw8PLR582a1aNFCSUlJqlixopYsWaKePXtKkg4cOCB/f39t375dDz30kL799lt16dJFZ86ckaenpyRp3rx5GjdunM6fPy9HR8fb7jc5OVlubm5KSkqSq6troYylfa+phdIOUJjWLOM/fQCA+1Ne81qxmnOblJQkSSpXrpwkadeuXUpLS1NwcLC1Tt26dVW1alVt375dkrR9+3YFBARYg60khYSEKDk5Wfv27ctxPykpKUpOTrZZAAAAcP8rULitXr26Lly4kK08MTFR1atXL1BHMjMzNXLkSD3yyCNq0KCBJCk+Pl6Ojo5yd3e3qevp6an4+HhrnZuDbdb6rHU5iYqKkpubm3Xx8fEpUJ8BAABQvBQo3B4/flwZGRnZylNSUnT69OkCdSQ8PFx79+7V0qVLC7R9fkRGRiopKcm6nDp16q7vEwAAAHdfifxU/uqrr6z/Xr16tdzc3KyvMzIytH79elWrVi3fnYiIiNDKlSu1ZcsWValSxVru5eWl1NRUJSYm2ty9PXfunLy8vKx1fvzxR5v2sp6mkFXnr5ycnOTk5JTvfgIAAKB4y1e47d69uyTJYrEoNDTUZp2Dg4OqVaumN998M8/tGYahESNG6PPPP9emTZvk5+dns75JkyZycHDQ+vXr1aNHD0nSwYMHdfLkSQUFBUmSgoKC9MorryghIUEeHh6SpLVr18rV1VX16tXLz/AAAABwn8tXuM3MzJQk+fn5aefOnapQocId7Tw8PFxLlizRl19+qTJlyljnyLq5ucnZ2Vlubm4KCwvT6NGjVa5cObm6umrEiBEKCgrSQw89JElq37696tWrp379+un1119XfHy8JkyYoPDwcO7OAgAA/M3kK9xmOXbsWKHsfO7cuZKkVq1a2ZRHR0drwIABkqSZM2fKzs5OPXr0UEpKikJCQvTee+9Z69rb22vlypUaPny4goKC5OLiotDQUE2dyqO4AAAA/m4K/Jzb9evXa/369UpISLDe0c2ycOHCQuncvcJzbvF3wXNuAQD3q7zmtQLduZ0yZYqmTp2qpk2bqlKlSrJYLAXuKAAAAFBYChRu582bp5iYGPXr16+w+wMAAAAUWIGec5uamqqHH364sPsCAAAA3JEChdtBgwZpyZIlhd0XAAAA4I4UaFrCjRs3NH/+fK1bt06BgYFycHCwWf/WW28VSucAAACA/ChQuN29e7caNWokSdq7d6/NOj5cBgAAgKJSoHC7cePGwu4HAAAAcMcKNOcWAAAAKI4KdOe2devWt5x+sGHDhgJ3CAAAACioAoXbrPm2WdLS0hQXF6e9e/cqNDS0MPoFAAAA5FuBwu3MmTNzLJ88ebKuXLlyRx0CAAAACqpQ59w+/fTTWrhwYWE2CQAAAORZoYbb7du3q2TJkoXZJAAAAJBnBZqW8OSTT9q8NgxDZ8+e1U8//aSXXnqpUDoGAAAA5FeBwq2bm5vNazs7O9WpU0dTp05V+/btC6VjAAAAQH4VKNxGR0cXdj8AAACAO1agcJtl165d2r9/vySpfv36aty4caF0CgAAACiIAoXbhIQE9e7dW5s2bZK7u7skKTExUa1bt9bSpUtVsWLFwuwjAAAAkCcFelrCiBEjdPnyZe3bt08XL17UxYsXtXfvXiUnJ+u5554r7D4CAAAAeVKgO7erVq3SunXr5O/vby2rV6+e3n33XT5QBgAAgCJToDu3mZmZcnBwyFbu4OCgzMzMO+4UAAAAUBAFCrdt2rTR888/rzNnzljLTp8+rVGjRqlt27aF1jkAAAAgPwoUbt955x0lJyerWrVqqlGjhmrUqCE/Pz8lJydrzpw5hd1HAAAAIE8KNOfWx8dHP//8s9atW6cDBw5Ikvz9/RUcHFyonQMAAADyI193bjds2KB69eopOTlZFotF7dq104gRIzRixAg1a9ZM9evX13fffXe3+goAAADcUr7C7axZszR48GC5urpmW+fm5qahQ4fqrbfeKrTOAQAAAPmRr3D7yy+/qEOHDrmub9++vXbt2nXHnQIAAAAKIl/h9ty5czk+AixLiRIldP78+TvuFAAAAFAQ+Qq3lStX1t69e3Ndv3v3blWqVOmOOwUAAAAURL7CbadOnfTSSy/pxo0b2dZdv35dkyZNUpcuXQqtcwAAAEB+5OtRYBMmTNBnn32m2rVrKyIiQnXq1JEkHThwQO+++64yMjL073//+650FAAAALidfIVbT09Pbdu2TcOHD1dkZKQMw5AkWSwWhYSE6N1335Wnp+dd6SgAAABwO/n+EgdfX1998803unTpko4cOSLDMFSrVi2VLVv2bvQPAAAAyLMCfUOZJJUtW1bNmjUrzL4AAAAAdyRfHygDAAAAijPCLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANIo03G7ZskVdu3aVt7e3LBaLvvjiC5v1AwYMkMVisVk6dOhgU+fixYvq27evXF1d5e7urrCwMF25cuUejgIAAADFRZGG26tXr6phw4Z69913c63ToUMHnT171rp88sknNuv79u2rffv2ae3atVq5cqW2bNmiIUOG3O2uAwAAoBgq8NfvFoaOHTuqY8eOt6zj5OQkLy+vHNft379fq1at0s6dO9W0aVNJ0pw5c9SpUye98cYb8vb2LvQ+AwAAoPgq9nNuN23aJA8PD9WpU0fDhw/XhQsXrOu2b98ud3d3a7CVpODgYNnZ2WnHjh25tpmSkqLk5GSbBQAAAPe/Yh1uO3TooI8++kjr16/Xa6+9ps2bN6tjx47KyMiQJMXHx8vDw8NmmxIlSqhcuXKKj4/Ptd2oqCi5ublZFx8fn7s6DgAAANwbRTot4XZ69+5t/XdAQIACAwNVo0YNbdq0SW3bti1wu5GRkRo9erT1dXJyMgEXAADABIr1ndu/ql69uipUqKAjR45Ikry8vJSQkGBTJz09XRcvXsx1nq705zxeV1dXmwUAAAD3v/sq3P7++++6cOGCKlWqJEkKCgpSYmKidu3aZa2zYcMGZWZmqnnz5kXVTQAAABSRIp2WcOXKFetdWEk6duyY4uLiVK5cOZUrV05TpkxRjx495OXlpaNHj2rs2LGqWbOmQkJCJEn+/v7q0KGDBg8erHnz5iktLU0RERHq3bs3T0oAAAD4GyrSO7c//fSTGjdurMaNG0uSRo8ercaNG2vixImyt7fX7t271a1bN9WuXVthYWFq0qSJvvvuOzk5OVnbWLx4serWrau2bduqU6dOevTRRzV//vyiGhIAAACKUJHeuW3VqpUMw8h1/erVq2/bRrly5bRkyZLC7BYAAADuU/fVnFsAAADgVgi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANAi3AAAAMA3CLQAAAEyDcAsAAADTINwCAADANIo03G7ZskVdu3aVt7e3LBaLvvjiC5v1hmFo4sSJqlSpkpydnRUcHKzDhw/b1Ll48aL69u0rV1dXubu7KywsTFeuXLmHowAAAEBxUaTh9urVq2rYsKHefffdHNe//vrrevvttzVv3jzt2LFDLi4uCgkJ0Y0bN6x1+vbtq3379mnt2rVauXKltmzZoiFDhtyrIQAAAKAYKVGUO+/YsaM6duyY4zrDMDRr1ixNmDBBjz/+uCTpo48+kqenp7744gv17t1b+/fv16pVq7Rz5041bdpUkjRnzhx16tRJb7zxhry9ve/ZWAAAAFD0iu2c22PHjik+Pl7BwcHWMjc3NzVv3lzbt2+XJG3fvl3u7u7WYCtJwcHBsrOz044dO3JtOyUlRcnJyTYLAAAA7n/FNtzGx8dLkjw9PW3KPT09revi4+Pl4eFhs75EiRIqV66ctU5OoqKi5ObmZl18fHwKufcAAAAoCsU23N5NkZGRSkpKsi6nTp0q6i4BAACgEBTbcOvl5SVJOnfunE35uXPnrOu8vLyUkJBgsz49PV0XL1601smJk5OTXF1dbRYAAADc/4ptuPXz85OXl5fWr19vLUtOTtaOHTsUFBQkSQoKClJiYqJ27dplrbNhwwZlZmaqefPm97zPAAAAKFpF+rSEK1eu6MiRI9bXx44dU1xcnMqVK6eqVatq5MiRmjZtmmrVqiU/Pz+99NJL8vb2Vvfu3SVJ/v7+6tChgwYPHqx58+YpLS1NERER6t27N09KAAAA+Bsq0nD7008/qXXr1tbXo0ePliSFhoYqJiZGY8eO1dWrVzVkyBAlJibq0Ucf1apVq1SyZEnrNosXL1ZERITatm0rOzs79ejRQ2+//fY9HwsAAACKnsUwDKOoO1HUkpOT5ebmpqSkpEKbf9u+19RCaQcoTGuWTSzqLgAAUCB5zWvFds4tAAAAkF+EWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJgG4RYAAACmQbgFAACAaRBuAQAAYBqEWwAAAJhGsQ63kydPlsVisVnq1q1rXX/jxg2Fh4erfPnyKl26tHr06KFz584VYY8BAABQlIp1uJWk+vXr6+zZs9Zl69at1nWjRo3S119/reXLl2vz5s06c+aMnnzyySLsLQAAAIpSiaLuwO2UKFFCXl5e2cqTkpK0YMECLVmyRG3atJEkRUdHy9/fXz/88IMeeuihe91VAAAAFLFif+f28OHD8vb2VvXq1dW3b1+dPHlSkrRr1y6lpaUpODjYWrdu3bqqWrWqtm/ffss2U1JSlJycbLMAAADg/lesw23z5s0VExOjVatWae7cuTp27Jgee+wxXb58WfHx8XJ0dJS7u7vNNp6enoqPj79lu1FRUXJzc7MuPj4+d3EUAAAAuFeK9bSEjh07Wv8dGBio5s2by9fXV59++qmcnZ0L3G5kZKRGjx5tfZ2cnEzABQAAMIFifef2r9zd3VW7dm0dOXJEXl5eSk1NVWJiok2dc+fO5ThH92ZOTk5ydXW1WQAAAHD/u6/C7ZUrV3T06FFVqlRJTZo0kYODg9avX29df/DgQZ08eVJBQUFF2EsAAAAUlWI9LeHFF19U165d5evrqzNnzmjSpEmyt7dXnz595ObmprCwMI0ePVrlypWTq6urRowYoaCgIJ6UAAAA8DdVrMPt77//rj59+ujChQuqWLGiHn30Uf3www+qWLGiJGnmzJmys7NTjx49lJKSopCQEL333ntF3GsAAAAUFYthGEZRd6KoJScny83NTUlJSYU2/7Z9r6mF0g5QmNYsm1jUXQAAoEDymtfuqzm3AAAAwK0QbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYBuEWAO4Dr776qiwWi0aOHHnLeomJiQoPD1elSpXk5OSk2rVr65tvvrGuX7x4sXx8fFS2bFmNHj3aZtvjx4+rdu3aSk5OvhtDAIB7okRRdwAAcGs7d+7U+++/r8DAwFvWS01NVbt27eTh4aEVK1aocuXKOnHihNzd3SVJf/zxhwYNGqSYmBhVr15dnTt3Vps2bdSlSxdJ0rPPPqtXX31Vrq6ud3tIAHDXEG4BoBi7cuWK+vbtqw8++EDTpk27Zd2FCxfq4sWL2rZtmxwcHCRJ1apVs67/7bff5Obmpl69ekmSWrdurf3796tLly765JNP5ODgoCeffPKujQUA7gWmJQBAMRYeHq7OnTsrODj4tnW/+uorBQUFKTw8XJ6enmrQoIGmT5+ujIwMSVKtWrV07do1/e9//9PFixe1c+dOBQYG6tKlS3rppZf0zjvv3O3hAMBdx51bACimli5dqp9//lk7d+7MU/3ffvtNGzZsUN++ffXNN9/oyJEjevbZZ5WWlqZJkyapbNmyio2NVf/+/XX9+nX1799fISEhCgsLU0REhI4dO6Zu3bopLS1NkydPVs+ePe/yCAGg8BFuAaAYOnXqlJ5//nmtXbtWJUuWzNM2mZmZ8vDw0Pz582Vvb68mTZro9OnTmjFjhiZNmiRJeuKJJ/TEE09Yt9m8ebN2796tOXPmqGbNmvrkk0/k5eWlBx98UC1atJCHh8ddGR8A3C2EWwAohnbt2qWEhAQ98MAD1rKMjAxt2bJF77zzjlJSUmRvb2+zTaVKleTg4GBT7u/vr/j4eKWmpsrR0dGmfkpKip599lktWrRIR44cUXp6ulq2bClJql27tnbs2KGuXbvexVECQOFjzi0AFENt27bVnj17FBcXZ12aNm2qvn37Ki4uLluwlaRHHnlER44cUWZmprXs0KFDqlSpUrZgK0nTpk1Thw4d9MADDygjI0Pp6enWdWlpada5ugBwP+HOLQAUQ2XKlFGDBg1sylxcXFS+fHlref/+/VW5cmVFRUVJkoYPH6533nlHzz//vEaMGKHDhw9r+vTpeu6557K1/+uvv2rZsmX63//+J0mqW7eu7OzstGDBAnl5eenAgQNq1qzZXR4lABQ+wi0A3KdOnjwpO7v/+wOcj4+PVq9erVGjRikwMFCVK1fW888/r3HjxtlsZxiGhgwZorfeeksuLi6SJGdnZ8XExCg8PFwpKSl65513VLly5Xs6HgAoDBbDMIyi7kRRS05Olpubm5KSkgrt4eXte00tlHaAwrRm2cSi7gIAAAWS17zGnFsAAACYBuEWAAAApsGcWwDFSqNpk4u6C4CNuAmTi7oLAPKBO7cAAAAwDcItAAAATINwCwAAANMg3AIAANN59913Va1aNZUsWVLNmzfXjz/+mGvdzz77TE2bNpW7u7tcXFzUqFEjLVq0yKbOG2+8IQ8PD3l4eOjNN9+0Wbdjxw41adLE5lv+UHT4QBkAADCVZcuWafTo0Zo3b56aN2+uWbNmKSQkRAcPHpSHh0e2+uXKldO///1v1a1bV46Ojlq5cqUGDhwoDw8PhYSEaPfu3Zo4caJWrlwpwzDUpUsXtW/fXgEBAUpPT9ewYcM0f/58lShBrCoOuHMLAABM5a233tLgwYM1cOBA1atXT/PmzVOpUqW0cOHCHOu3atVKTzzxhPz9/VWjRg09//zzCgwM1NatWyVJBw4cUGBgoNq0aaO2bdsqMDBQBw4ckCTNmDFDLVq04OuqixHCLQAAMI3U1FTt2rVLwcHB1jI7OzsFBwdr+/btt93eMAytX79eBw8eVIsWLSRJAQEBOnTokE6ePKkTJ07o0KFDatCggY4eParo6GhNmzbtro0H+Ue4BQAApvHHH38oIyNDnp6eNuWenp6Kj4/PdbukpCSVLl1ajo6O6ty5s+bMmaN27dpJkvz9/TV9+nS1a9dO7du3V1RUlPz9/TV06FC9/vrrWr16tRo0aKDGjRtry5Ytd3V8uD0mhwAAgL+9MmXKKC4uTleuXNH69es1evRoVa9eXa1atZIkDRs2TMOGDbPWj42NVZkyZRQUFKQ6depo586d+v3339W7d28dO3ZMTk5ORTQSEG4BAIBpVKhQQfb29jp37pxN+blz5+Tl5ZXrdnZ2dqpZs6YkqVGjRtq/f7+ioqKs4fZmf/zxh6ZMmaItW7Zox44dql27tmrVqqVatWopLS1Nhw4dUkBAQKGOC3nHtAQAAGAajo6OatKkidavX28ty8zM1Pr16xUUFJTndjIzM5WSkpLjulGjRmnUqFGqUqWKMjIylJaWZl2Xnp6ujIyMgg8Ad4w7twAAwFRGjx6t0NBQNW3aVA8++KBmzZqlq1evauDAgZKk/v37q3LlyoqKipIkRUVFqWnTpqpRo4ZSUlL0zTffaNGiRZo7d262tteuXatDhw4pNjZWktSsWTMdOHBA3377rU6dOiV7e3vVqVPn3g0W2RBuAQCAqfTq1Uvnz5/XxIkTFR8fr0aNGmnVqlXWD5mdPHlSdnb/98frq1ev6tlnn9Xvv/8uZ2dn1a1bVx9//LF69epl0+7169cVERGhZcuWWbevUqWK5syZo4EDB8rJyUmxsbFydna+d4NFNhbDMIyi7kRhePfddzVjxgzFx8erYcOGmjNnjh588ME8bZucnCw3NzclJSXJ1dW1UPrTvtfUQmkHKExrlk0s6i7cVqNpk4u6C4CNuAmTi7oLAJT3vGaKObdZ30QyadIk/fzzz2rYsKFCQkKUkJBQ1F0DAADAPWSKcJvfbyIBAACAOd33c26zvokkMjLSWna7byJJSUmx+QRkUlKSpD9vdxeW9LQbhdYWUFgK8xy/WzJu5PzpZKCo3A/XjSSN2TS2qLsA2JjR6vVCbS/rWrzdjNr7Ptze6ptIsr73+a+ioqI0ZcqUbOU+Pj53pY9AceH2eVRRdwG477i98mpRdwG4L83X+3el3cuXL8vNzS3X9fd9uC2IyMhIjR492vo6MzNTFy9eVPny5WWxWIqwZ/ir5ORk+fj46NSpU4X2YT/g74BrB8g/rpvizTAMXb58Wd7e3resd9+H24J8E4mTk1O2r8Vzd3e/W11EIXB1deWNBigArh0g/7huiq9b3bHNct9/oKywvokEAAAA97/7/s6tdPtvIgEAAMDfgynC7e2+iQT3LycnJ02aNCnbNBIAt8a1A+Qf1405mOYbygAAAID7fs4tAAAAkIVwCwAAANMg3AIAAMA0CLcAAAAwDcItcjRgwABZLBZZLBY5ODjIz89PY8eO1Y0bN6x1stb/dVm6dKkkadOmTbJYLEpMTMxxH5MnT85x+7p160qSAgICNGzYsBy3XbRokZycnPTHH39Yy0JCQmRvb6+dO3fmOp5XX7X9Gs0vvvjC+q10N485p6VatWp5Pn4oPm7+uTo6OqpmzZqaOnWq0tPTrXXycu7kdC3ExMTc8pyxWCw6fvy4Jk+erEaNGlnbNAxDwcHBCgkJyba/9957T+7u7vr9999vOa6s6ytrqVixojp16qQ9e/bk2v+blw4dOljrVKtWTbNmzcpxP8ePH891bD/88IPefPNNlS1b1ua9Icu1a9fk6uqqt99+21r2ySefyN7eXuHh4bmOqX79+srIyLBZ5+7urpiYmGzjzmnZtGnTLY8dCkde3lclKSMjQzNnzlRAQIBKliypsmXLqmPHjvr+++9ttsu6nm4+NyUpMTExXz/Xm88FV1dXNWvWTF9++WWO+/rrUrJkSZvxde/ePdf9VKtWLcc2Xn31Ve3atct6jeSkbdu2evLJJ62vf//9dzk6OqpBgwa5jqlkyZI6ceKETXn37t01YMCAbOPOaZk8efItjpq5EG6Rqw4dOujs2bP67bffNHPmTL3//vuaNGmSTZ3o6GidPXvWZrnVm8Ff1a9fP9v2W7dulSSFhYVp6dKlun79erbtoqOj1a1bN1WoUEGSdPLkSW3btk0RERFauHBhjvsqWbKkXnvtNV26dCnH9bNnz7bpx1/Hl1Pwwf0h61w+fPiwXnjhBU2ePFkzZsyQlLdzJ7droVevXjbnTFBQkAYPHmxT5uPjk609i8Wi6Oho7dixQ++//3/fvX7s2DGNHTtWc+bMUZUqVfI0toMHD+rs2bNavXq1UlJS1LlzZ6WmpubY/5uXTz75JK+HT5K0bt26bG00adJE/fr109WrV/XZZ59l22bFihVKTU3V008/bS1bsGCBxo4dq08++STHQCxJv/32mz766KMc1z388MM2fXjqqaeyje/hhx/O19hQcLd7XzUMQ71799bUqVP1/PPPa//+/dq0aZN8fHzUqlUrffHFFzb1S5QooXXr1mnjxo131K+s9+6ffvpJjzzyiHr27JntP36urq7Zzum/hsfbmTp1arY2RowYoSZNmqhhw4Y5vqccP35cGzduVFhYmLUsJiZGTz31lJKTk7Vjx44c92WxWDRx4sRc+3JzH2bNmpVtfC+++GK+xnY/I9wiV05OTvLy8pKPj4+6d++u4OBgrV271qaOu7u7vLy8bJab/+d7OyVKlMi2fVZgffrpp3X9+nX95z//sdnm2LFj2rRpk80bQ3R0tLp06aLhw4frk08+yTEQBwcHy8vLS1FRUTn2xc3NzaYffx1fxYoV8zwuFC9Z57Kvr6+GDx+u4OBgffXVV5Lydu7kdi04OzvbnDOOjo4qVaqUTZm9vX2OffLx8dHs2bP14osv6tixYzIMQ2FhYWrfvr369euX57F5eHjIy8tLDzzwgEaOHKlTp07pwIEDOfb/5qVs2bL5OIJS+fLls7Xh4OAgDw8Pde3aNcdf4gsXLlT37t1Vrlw5SX9eu9u2bdO//vUv1a5dO8dALEkjRozQpEmTlJKSkm2do6OjTR+cnZ2zjc/R0TFfY0PB3e599dNPP9WKFSv00UcfadCgQfLz81PDhg01f/58devWTYMGDdLVq1et9V1cXPTMM8/oX//61x31K+u9u3bt2nr55ZeVnp6eLTBbLJZs53R+n49fpkyZbG24uLhI+vMGzbJly3Tt2jWbbWJiYlSpUiXrHWrDMBQdHa1+/frpn//8pxYsWJDjviIiIvTxxx9r7969Oa6/uQ9ubm7Zxle6dOl8je1+RrhFnuzdu1fbtm27p780KlSooMcffzzbL82YmBhVqVJF7du3l/R/bwxPP/206tatq5o1a2rFihXZ2rO3t9f06dM1Z86c2/7JF+bm7Oys1NTUPJ87NyvMayE0NFRt27bVM888o3feeUd79+61uZObH0lJSdYpQfc63IWFhWnDhg02d71+++03bdmyJdt/Qjt37iw3Nzc9/fTTuf4SHzlypNLT0zVnzpy73nfcmdu9ry5ZskS1a9dW165ds6174YUXdOHChWw3TSZPnqw9e/bc9lrMi/T0dOt5dq+vi759+yolJcVmHIZhKDY2VgMGDLD+x3fjxo26du2agoOD9fTTT2vp0qU2gT/LI488oi5dutxx8P87INwiVytXrlTp0qVVsmRJBQQEKCEhQWPGjLGp06dPH5UuXdpmOXnyZJ73sWfPnmzb3zzPNiwsTJs2bdKxY8ck/d8bQ2hoqOzs/jx9161bp2vXrlnnL97ql+YTTzyhRo0aZZtegb8HwzC0bt06rV69Wm3atMnzuZOXa6Gg5s+fr71792rkyJGaP39+vv9CUKVKFZUuXVru7u5asmSJunXrZp23/tf+37xMnz49X/t5+OGHs7WRJSQkRN7e3oqOjraWxcTEyMfHR23btpUkZWZmKiYmxjpFoXfv3tq6dav12r5ZqVKlNGnSJEVFRSkpKSlf/cS9d6v31UOHDsnf3z/H7bLKDx06ZFPu7e2t559/Xv/+979t5sbnR9bvJicnJ40aNUrVqlXTU089ZVMnKSkp2zndsWPHfO1n3Lhx2dr47rvvJEnlypXTE088YXODZuPGjTp+/LgGDhxoLVuwYIF69+4te3t7NWjQQNWrV9fy5ctz3F9UVJRWrVpl3QdyRrhFrlq3bq24uDjt2LFDoaGhGjhwoHr06GFTZ+bMmYqLi7NZvL2987yPOnXqZNt+6tSp1vXt2rVTlSpVrL80169fr5MnT9q8MSxcuFC9evVSiRJ/fpt0nz599P333+vo0aM57vO1115TbGys9u/fn+d+4v52czjt2LGjevXqpcmTJ+f53MnLtVBQHh4eGjp0qPz9/fM1Xz3Ld999p127dikmJka1a9fWvHnzstXJ6v/NS24f1szNsmXLsrWRxd7eXqGhoYqJiZFhGMrMzFRsbKwGDhxo/U/o2rVrdfXqVXXq1EnSn3+ZadeuXa7znMPCwlS+fHm99tpr+eonisat3lcL8kWo48aN0/nz53M9P24n63fTt99+q3r16unDDz+0To/JUqZMmWzn9Icffpiv/YwZMyZbG02bNrWuf+aZZ7Rlyxbre8rChQvVsmVL1axZU9KfH5b77LPPbOal3+oGTb169dS/f3/u3t5GiaLuAIovFxcX6wW4cOFCNWzYUAsWLLD5M6OXl5e1TkFkfXo9N3Z2dhowYIBiY2M1efJkRUdHq3Xr1qpevbok6eLFi/r888+VlpamuXPnWrfLyMjQwoUL9corr2Rrs0WLFgoJCVFkZKT1U6Ywt9atW2vu3LlydHSUt7e3SpQoka9zJy/Xwp0oUaKENWDnl5+fn9zd3VWnTh0lJCSoV69e2rJli02dm/tfUD4+Prds45lnnlFUVJQ2bNigzMxMnTp1KtvdqYsXL8rZ2dlalpmZqd27d2vKlCnWEJylRIkSeuWVVzRgwABFRETcUd9x9+X2vlq7du1cbyRkldeuXTvbOnd3d0VGRmrKlCnq0qVLvvuT9bupZs2aio6OVqdOnfTrr7/Kw8PDWsfOzu6Or4sKFSrcso22bduqatWqiomJ0ZgxY/TZZ5/ZTD1asmSJbty4oebNm1vLsv6DeOjQoRyPzZQpU1S7du1sH8bD/+HOLfLEzs5O48eP14QJE3L8wM3dNHDgQJ06dUqfffaZPv/8c5tAsXjxYlWpUkW//PKLzf+c33zzTcXExGR7nFCWV199VV9//bW2b99+r4aBIpQV7qpWrWoNkQU9d4ryWrid8PBw7d27V59//vk933eNGjXUsmVLLVy4UNHR0QoODpavr68k6cKFC/ryyy+1dOlSm2P9v//9T5cuXdKaNWtybPMf//iH6tevrylTptzLoaCAcnpf7d27tw4fPqyvv/46W/0333xT5cuXV7t27XJsb8SIEbKzs9Ps2bPvqF8PPvigmjRpkuPNjrvNzs5OAwcOVGxsrJYsWSJHR0f17NnTun7BggV64YUXbK6LX375RY899liud619fHwUERGh8ePH5/o+9XfHnVvk2T/+8Q+NGTNG7777rvWRIomJiYqPj7epV6ZMGeunRaU/59WWKVPG+tpisahhw4aS/pzs/9ftLRaLzSdW/fz81KZNGw0ZMkROTk42zwZcsGCBevbsme3ZgD4+PoqMjNSqVavUuXPnbGMJCAhQ3759bZ6/ib+Xgp47Us7Xwu1cv37d5k/50p/XSo0aNQrU/5yUKlVKgwcP1qRJk9S9e3frs0ZTUlKyXWclSpSwPplEkk6fPp2tf1nhVPozoP61DXd3d5uno4SFhWnw4MGS/pxzm2XRokUqX768nnrqKZvnn0pSp06dtGDBgmzPNs3y6quv5vg8YBQ/Ob2v9u7dW8uXL1doaKhmzJihtm3bKjk5We+++66++uorLV++3Ob3xc1KliypKVOm5PhM5PwaOXKknnjiCY0dO1aVK1eW9Ocd0r+e09KfU4Wy/pKQlJSU7booX7689RF/ly9fztZGqVKl5Orqan09cOBATZ06VePHj1efPn2sf72Ii4vTzz//rMWLF2ebJ9+nTx9NnTpV06ZNy/GvOpGRkfrggw907Ngx9erVK59H42/AAHIQGhpqPP7449nKo6KijIoVKxpXrlwxJOW4REVFGYZhGBs3bsxxvb29vWEYhjFp0qQc1zs5OWXb75IlSwxJxrPPPmst++mnnwxJxo8//pjjGDp27Gg88cQTuY7n2LFjhqOjo5HbZSDJ+Pzzz293qFDM5fSzv9NzxzBsr4UsLVu2NJ5//vlsdXM719u2bWtd37Bhw3yNK+v6unTpkk35yZMnjRIlShjLli2z9j+nfdepU8e6ja+vb451Fi1aZBw7dizXa/2TTz6x2fe1a9cMNzc3o1y5csaNGzes5QEBATbX7s2WLVtmODo6GufPn891TO3btzckGdHR0dm2z+3ng7svr++raWlpxowZM4z69esbjo6OhqurqxESEmJs3brVZtvo6GjDzc3Npiw9Pd2oV6+eIcnYuHFjnvqV03t3ZmamUbduXWP48OHWfeV2Xp89e9Y6vpzWh4WFGYaR+3UzdOjQbH3KOodvfs+JiIgw6tWrl+MYzp49a9jZ2RlffvllrmOaPn26IckIDQ3Ntn1Ox/LvxGIYBZjpDQAAABRDzLkFAACAaRBuAaAY6tixY7bnZxb0GbWAWUyfPj3X6yK/z6iFeTEtAQCKodOnT+f6NIZy5cple2Yn8Hdw8eJFXbx4Mcd1zs7O1g+L4e+NcAsAAADTYFoCAAAATINwCwAAANMg3AIAAMA0CLcAAAAwDcItABQjmzZtksViUWJiYlF3BQDuS4RbAChEAwYMkMVikcVikYODg/z8/DR27FjduHGjqLsGAH8LJYq6AwBgNh06dFB0dLTS0tK0a9cuhYaGymKx6LXXXivqrgGA6XHnFgAKmZOTk7y8vOTj46Pu3bsrODhYa9eulSRlZmYqKipKfn5+cnZ2VsOGDbVixYpbtrd161Y99thjcnZ2lo+Pj5577jldvXpVkjR+/Hg1b9482zYNGzbU1KlTJUk7d+5Uu3btVKFCBbm5ually5b6+eefbepbLBZ9+OGHeuKJJ1SqVCnVqlVLX331lU2dffv2qUuXLnJ1dVWZMmX02GOP6ejRo9b1H374ofz9/VWyZEnVrVtX7733Xv4PHgDcIcItANxFe/fu1bZt2+To6ChJioqK0kcffaR58+Zp3759GjVqlJ5++mlt3rw5x+2PHj2qDh06qEePHtq9e7eWLVumrVu3KiIiQpLUt29f/fjjjzYhc9++fdq9e7f++c9/SpIuX76s0NBQbd26VT/88INq1aqlTp066fLlyzb7mjJlip566int3r1bnTp1Ut++fa3fBnX69Gm1aNFCTk5O2rBhg3bt2qVnnnlG6enpkqTFixdr4sSJeuWVV7R//35Nnz5dL730kmJjYwv3gALA7RgAgEITGhpq2NvbGy4uLoaTk5MhybCzszNWrFhh3LhxwyhVqpSxbds2m23CwsKMPn36GIZhGBs3bjQkGZcuXbKuGzJkiE397777zrCzszOuX79uGIZhNGzY0Jg6dap1fWRkpNG8efNc+5iRkWGUKVPG+Prrr61lkowJEyZYX1+5csWQZHz77bfWNv38/IzU1NQc26xRo4axZMkSm7KXX37ZCAoKyrUfAHA3MOcWAApZ69atNXfuXF29elUzZ85UiRIl1KNHD+3bt0/Xrl1Tu3btbOqnpqaqcePGObb1yy+/aPfu3Vq8eLG1zDAMZWZm6tixY/L391ffvn21cOFCvfTSSzIMQ5988olGjx5trX/u3DlNmDBBmzZtUkJCgjIyMnTt2jWdPHnSZl+BgYHWf7u4uMjV1VUJCQmSpLi4OD322GNycHDI1serV6/q6NGjCgsL0+DBg63l6enpcnNzy8eRA4A7R7gFgELm4uKimjVrSpIWLlyohg0basGCBWrQoIEk6b///a8qV65ss42Tk1OObV25ckVDhw7Vc889l21d1apVJUl9+vTRuHHj9PPPP+v69es6deqUevXqZa0XGhqqCxcuaPbs2fL19ZWTk5OCgoKUmppq095fg6vFYlFmZqYkydnZOdfxXrlyRZL0wQcfZJv/a29vn+t2AHA3EG4B4C6ys7PT+PHjNXr0aB06dEhOTk46efKkWrZsmaftH3jgAf3666/WsJyTKlWqqGXLllq8eLGuX7+udu3aycPDw7r++++/13vvvadOnTpJkk6dOqU//vgjX+MIDAxUbGys0tLSsoVgT09PeXt767ffflPfvn3z1S4AFDY+UAYAd9k//vEP2dvb6/3339eLL76oUaNGKTY2VkePHtXPP/+sOXPm5PrBq3Hjxmnbtm2KiIhQXFycDh8+rC+//NL6gbIsffv21dKlS7V8+fJsAbNWrVpatGiR9u/frx07dqhv3763vBObk4iICCUnJ6t379766aefdPjwYS1atEgHDx6U9OeH0aKiovT222/r0KFD2rNnj6Kjo/XWW2/laz8AcKcItwBwl5UoUUIRERF6/fXXFRkZqZdeeklRUVHy9/dXhw4d9N///ld+fn45bhsYGKjNmzfr0KFDeuyxx9S4cWNNnDhR3t7eNvV69uypCxcu6Nq1a+revbvNugULFujSpUt64IEH1K9fPz333HM2d3bzonz58tqwYYOuXLmili1bqkmTJvrggw+sd3EHDRqkDz/8UNHR0QoICFDLli0VExOT67gA4G6xGIZhFHUnAAAAgMLAnVsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGkQbgEAAGAahFsAAACYBuEWAAAApkG4BQAAgGn8P1bFkUnMzwPxAAAAAElFTkSuQmCC",
"text/plain": [
"<Figure size 800x500 with 1 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Calculate counts and percentages\n",
"counts = df_eval_llama['relevance'].value_counts()\n",
"print(counts)\n",
"percentages = counts / counts.sum() * 100\n",
"\n",
"# Create bar plot\n",
"plt.figure(figsize=(8, 5))\n",
"ax = sns.countplot(data=df_eval, x='relevance', palette='viridis')\n",
"\n",
"# Add percentage labels on top of the bars\n",
"for p in ax.patches:\n",
" height = p.get_height()\n",
" ax.annotate(f'{height / counts.sum() * 100:.1f}%', \n",
" (p.get_x() + p.get_width() / 2., height), \n",
" ha='center', va='bottom')\n",
"\n",
"plt.title('Distribution of Relevance For llama')\n",
"plt.xlabel('Relevance')\n",
"plt.ylabel('Count')\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.13"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
|