from KOKORO.models import build_model from KOKORO.utils import tts,tts_file_name,podcast import sys sys.path.append('.') import os os.system("python download_model.py") import torch import gc import platform import shutil base_path=os.getcwd() def clean_folder_before_start(): global base_path folder_list=["dummy","TTS_DUB","kokoro_audio"] for folder in folder_list: if os.path.exists(f"{base_path}/{folder}"): try: shutil.rmtree(f"{base_path}/{folder}") except: pass os.makedirs(f"{base_path}/{folder}", exist_ok=True) clean_folder_before_start() print("Loading model...") device = 'cuda' if torch.cuda.is_available() else 'cpu' print(f'Using device: {device}') MODEL = build_model('./KOKORO/kokoro-v0_19.pth', device) print("Model loaded successfully.") def tts_maker(text,voice_name="af_bella",speed = 0.8,trim=0,pad_between=0,save_path="temp.wav",remove_silence=False,minimum_silence=50): # Sanitize the save_path to remove any newline characters save_path = save_path.replace('\n', '').replace('\r', '') global MODEL audio_path=tts(MODEL,device,text,voice_name,speed=speed,trim=trim,pad_between_segments=pad_between,output_file=save_path,remove_silence=remove_silence,minimum_silence=minimum_silence) return audio_path model_list = ["kokoro-v0_19.pth", "kokoro-v0_19-half.pth"] current_model = model_list[0] def update_model(model_name): """ Updates the TTS model only if the specified model is not already loaded. """ global MODEL, current_model if current_model == model_name: return f"Model already set to {model_name}" # No need to reload model_path = f"./KOKORO/{model_name}" # Default model path if model_name == "kokoro-v0_19-half.pth": model_path = f"./KOKORO/fp16/{model_name}" # Update path for specific model # print(f"Loading new model: {model_name}") del MODEL # Cleanup existing model gc.collect() torch.cuda.empty_cache() # Ensure GPU memory is cleared MODEL = build_model(model_path, device) current_model = model_name return f"Model updated to {model_name}" def manage_files(file_path): if os.path.exists(file_path): file_extension = os.path.splitext(file_path)[1] # Get file extension file_size = os.path.getsize(file_path) # Get file size in bytes # Check if file is a valid .pt file and its size is ≤ 5 MB if file_extension == ".pt" and file_size <= 5 * 1024 * 1024: return True # File is valid and kept else: os.remove(file_path) # Delete invalid or oversized file return False return False # File does not exist def text_to_speech(text, model_name="kokoro-v0_19.pth", voice_name="af", speed=1.0, pad_between_segments=0, remove_silence=True, minimum_silence=0.20,custom_voicepack=None,trim=0.0): """ Converts text to speech using the specified parameters and ensures the model is updated only if necessary. """ update_status = update_model(model_name) # Load the model only if required # print(update_status) # Log model loading status if not minimum_silence: minimum_silence = 0.05 keep_silence = int(minimum_silence * 1000) save_at = tts_file_name(text) # print(voice_name,custom_voicepack) if custom_voicepack: if manage_files(custom_voicepack): voice_name = custom_voicepack else: gr.Warning("Upload small size .pt file only. Using the Current voice pack instead.") audio_path = tts_maker( text, voice_name, speed, trim, pad_between_segments, save_at, remove_silence, keep_silence ) return audio_path import gradio as gr # voice_list = [ # 'af', # Default voice is a 50-50 mix of af_bella & af_sarah # 'af_bella', 'af_sarah', 'am_adam', 'am_michael', # 'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis', # ] import os # Get the list of voice names without file extensions voice_list = [ os.path.splitext(filename)[0] for filename in os.listdir("./KOKORO/voices") if filename.endswith('.pt') ] # Sort the list based on the length of each name voice_list = sorted(voice_list, key=len) def toggle_autoplay(autoplay): return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay) with gr.Blocks() as demo1: gr.Markdown("# Batched TTS") gr.Markdown("[Install on Windows/Linux](https://github.com/NeuralFalconYT/Kokoro-82M-WebUI)") with gr.Row(): with gr.Column(): text = gr.Textbox( label='Enter Text', lines=3, placeholder="Type your text here..." ) with gr.Row(): voice = gr.Dropdown( voice_list, value='af', allow_custom_value=False, label='Voice', info='Starred voices are more stable' ) with gr.Row(): generate_btn = gr.Button('Generate', variant='primary') with gr.Accordion('Audio Settings', open=False): model_name=gr.Dropdown(model_list,label="Model",value=model_list[0]) speed = gr.Slider( minimum=0.25, maximum=2, value=1, step=0.1, label='⚡️Speed', info='Adjust the speaking speed' ) remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS') minimum_silence = gr.Number( label="Keep Silence Upto (In seconds)", value=0.05 ) # trim = gr.Slider( # minimum=0, maximum=1, value=0, step=0.1, # label='🔪 Trim', info='How much to cut from both ends of each segment' # ) pad_between = gr.Slider( minimum=0, maximum=2, value=0, step=0.1, label='🔇 Pad Between', info='Silent Duration between segments [For Large Text]' ) custom_voicepack = gr.File(label='Upload Custom VoicePack .pt file') with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True) with gr.Accordion('Enable Autoplay', open=False): autoplay = gr.Checkbox(value=True, label='Autoplay') autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio]) text.submit( text_to_speech, inputs=[text, model_name,voice, speed, pad_between, remove_silence, minimum_silence,custom_voicepack], outputs=[audio] ) generate_btn.click( text_to_speech, inputs=[text,model_name, voice, speed, pad_between, remove_silence, minimum_silence,custom_voicepack], outputs=[audio] ) def podcast_maker(text,remove_silence=False,minimum_silence=50,model_name="kokoro-v0_19.pth"): global MODEL,device update_model(model_name) if not minimum_silence: minimum_silence = 0.05 keep_silence = int(minimum_silence * 1000) podcast_save_at=podcast(MODEL, device,text,remove_silence=remove_silence, minimum_silence=keep_silence) return podcast_save_at dummpy_example="""{af} Hello, I'd like to order a sandwich please. {af_sky} What do you mean you're out of bread? {af_bella} I really wanted a sandwich though... {af_nicole} You know what, darn you and your little shop! {bm_george} I'll just go back home and cry now. {am_adam} Why me?""" with gr.Blocks() as demo2: gr.Markdown( """ # Multiple Speech-Type Generation This section allows you to generate multiple speech types or different VOICE PACK's at same text Input. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use "af" voice. Format: {voice_name} your text here """ ) with gr.Row(): gr.Markdown( """ **Example Input:** {af} Hello, I'd like to order a sandwich please. {af_sky} What do you mean you're out of bread? {af_bella} I really wanted a sandwich though... {af_nicole} You know what, darn you and your little shop! {bm_george} I'll just go back home and cry now. {am_adam} Why me?! """ ) with gr.Row(): with gr.Column(): text = gr.Textbox( label='Enter Text', lines=7, placeholder=dummpy_example ) with gr.Row(): generate_btn = gr.Button('Generate', variant='primary') with gr.Accordion('Audio Settings', open=False): remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS') minimum_silence = gr.Number( label="Keep Silence Upto (In seconds)", value=0.20 ) with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True) with gr.Accordion('Enable Autoplay', open=False): autoplay = gr.Checkbox(value=True, label='Autoplay') autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio]) text.submit( podcast_maker, inputs=[text, remove_silence, minimum_silence], outputs=[audio] ) generate_btn.click( podcast_maker, inputs=[text, remove_silence, minimum_silence], outputs=[audio] ) import shutil import os # Ensure the output directory exists output_dir = "./temp_audio" os.makedirs(output_dir, exist_ok=True) #@title Generate Audio File From Subtitle # from tqdm.notebook import tqdm from tqdm import tqdm import subprocess import json import pysrt import os from pydub import AudioSegment import shutil import uuid import re import time # os.chdir(install_path) # def your_tts(text,audio_path,actual_duration,speed=1.0): # global srt_voice_name # model_name="kokoro-v0_19.pth" # tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speed,trim=1.0) # # print(tts_path) # tts_audio = AudioSegment.from_file(tts_path) # tts_duration = len(tts_audio) # if tts_duration > actual_duration: # speedup_factor = tts_duration / actual_duration # tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speedup_factor,trim=1.0) # # print(tts_path) # shutil.copy(tts_path,audio_path) def your_tts(text, audio_path, actual_duration, speed=1.0): global srt_voice_name model_name = "kokoro-v0_19.pth" # Generate TTS audio tts_path = text_to_speech(text, model_name, voice_name=srt_voice_name, speed=speed, trim=1.0) tts_audio = AudioSegment.from_file(tts_path) tts_duration = len(tts_audio) if actual_duration > 0: if tts_duration > actual_duration: speedup_factor = tts_duration / actual_duration tts_path = text_to_speech(text, model_name, voice_name=srt_voice_name, speed=speedup_factor, trim=1.0) else: pass shutil.copy(tts_path, audio_path) base_path="." import datetime def get_current_time(): # Return current time as a string in the format HH_MM_AM/PM return datetime.datetime.now().strftime("%I_%M_%p") def get_subtitle_Dub_path(srt_file_path,Language="en"): file_name = os.path.splitext(os.path.basename(srt_file_path))[0] if not os.path.exists(f"{base_path}/TTS_DUB"): os.mkdir(f"{base_path}/TTS_DUB") random_string = str(uuid.uuid4())[:6] new_path=f"{base_path}/TTS_DUB/{file_name}_{Language}_{get_current_time()}_{random_string}.wav" return new_path def clean_srt(input_path): file_name = os.path.basename(input_path) output_folder = f"{base_path}/save_srt" if not os.path.exists(output_folder): os.mkdir(output_folder) output_path = f"{output_folder}/{file_name}" def clean_srt_line(text): bad_list = ["[", "]", "♫", "\n"] for i in bad_list: text = text.replace(i, "") return text.strip() # Load the subtitle file subs = pysrt.open(input_path) # Iterate through each subtitle and print its details with open(output_path, "w", encoding='utf-8') as file: for sub in subs: file.write(f"{sub.index}\n") file.write(f"{sub.start} --> {sub.end}\n") file.write(f"{clean_srt_line(sub.text)}\n") file.write("\n") file.close() # print(f"Clean SRT saved at: {output_path}") return output_path # Example usage import librosa import soundfile as sf import subprocess def speedup_audio_librosa(input_file, output_file, speedup_factor): try: # Load the audio file y, sr = librosa.load(input_file, sr=None) # Use time stretching to speed up audio without changing pitch y_stretched = librosa.effects.time_stretch(y, rate=speedup_factor) # Save the output with the original sample rate sf.write(output_file, y_stretched, sr) # print(f"Speed up by {speedup_factor} completed successfully: {output_file}") except Exception as e: gr.Warning(f"Error during speedup with Librosa: {e}") shutil.copy(input_file, output_file) def is_ffmpeg_installed(): if platform.system() == "Windows": local_ffmpeg_path = os.path.join("./ffmpeg", "ffmpeg.exe") else: local_ffmpeg_path = "ffmpeg" try: subprocess.run([local_ffmpeg_path, "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=True) # print("FFmpeg is installed") return True,local_ffmpeg_path except (FileNotFoundError, subprocess.CalledProcessError): # print("FFmpeg is not installed. Using 'librosa' for speedup audio in SRT dubbing") gr.Warning("FFmpeg is not installed. Using 'librosa' for speedup audio in SRT dubbing",duration= 20) return False,local_ffmpeg_path # ffmpeg -i test.wav -filter:a "atempo=2.0" ffmpeg.wav -y def change_speed(input_file, output_file, speedup_factor): global use_ffmpeg,local_ffmpeg_path if use_ffmpeg: # print("Using FFmpeg for speedup") try: # subprocess.run([ # local_ffmpeg_path, # "-i", input_file, # "-filter:a", f"atempo={speedup_factor}", # output_file, # "-y" # ], check=True) subprocess.run([ local_ffmpeg_path, "-i", input_file, "-filter:a", f"atempo={speedup_factor}", output_file, "-y" ], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL) except Exception as e: gr.Error(f"Error during speedup with FFmpeg: {e}") speedup_audio_librosa(input_file, output_file, speedup_factor) else: # print("Using Librosa for speedup") speedup_audio_librosa(input_file, output_file, speedup_factor) class SRTDubbing: def __init__(self): pass @staticmethod def text_to_speech_srt(text, audio_path, language, actual_duration): tts_filename = "./cache/temp.wav" your_tts(text,tts_filename,actual_duration,speed=1.0) # Check the duration of the generated TTS audio tts_audio = AudioSegment.from_file(tts_filename) tts_duration = len(tts_audio) if actual_duration == 0: # If actual duration is zero, use the original TTS audio without modifications shutil.move(tts_filename, audio_path) return # If TTS audio duration is longer than actual duration, speed up the audio if tts_duration > actual_duration: speedup_factor = tts_duration / actual_duration speedup_filename = "./cache/speedup_temp.wav" change_speed(tts_filename, speedup_filename, speedup_factor) # Use ffmpeg to change audio speed # subprocess.run([ # "ffmpeg", # "-i", tts_filename, # "-filter:a", f"atempo={speedup_factor}", # speedup_filename, # "-y" # ], check=True) # Replace the original TTS audio with the sped-up version shutil.move(speedup_filename, audio_path) elif tts_duration < actual_duration: # If TTS audio duration is less than actual duration, add silence to match the duration silence_gap = actual_duration - tts_duration silence = AudioSegment.silent(duration=int(silence_gap)) new_audio = tts_audio + silence # Save the new audio with added silence new_audio.export(audio_path, format="wav") else: # If TTS audio duration is equal to actual duration, use the original TTS audio shutil.move(tts_filename, audio_path) @staticmethod def make_silence(pause_time, pause_save_path): silence = AudioSegment.silent(duration=pause_time) silence.export(pause_save_path, format="wav") return pause_save_path @staticmethod def create_folder_for_srt(srt_file_path): srt_base_name = os.path.splitext(os.path.basename(srt_file_path))[0] random_uuid = str(uuid.uuid4())[:4] dummy_folder_path = f"{base_path}/dummy" if not os.path.exists(dummy_folder_path): os.makedirs(dummy_folder_path) folder_path = os.path.join(dummy_folder_path, f"{srt_base_name}_{random_uuid}") os.makedirs(folder_path, exist_ok=True) return folder_path @staticmethod def concatenate_audio_files(audio_paths, output_path): concatenated_audio = AudioSegment.silent(duration=0) for audio_path in audio_paths: audio_segment = AudioSegment.from_file(audio_path) concatenated_audio += audio_segment concatenated_audio.export(output_path, format="wav") def srt_to_dub(self, srt_file_path,dub_save_path,language='en'): result = self.read_srt_file(srt_file_path) new_folder_path = self.create_folder_for_srt(srt_file_path) join_path = [] for i in tqdm(result): # for i in result: text = i['text'] actual_duration = i['end_time'] - i['start_time'] pause_time = i['pause_time'] slient_path = f"{new_folder_path}/{i['previous_pause']}" self.make_silence(pause_time, slient_path) join_path.append(slient_path) tts_path = f"{new_folder_path}/{i['audio_name']}" self.text_to_speech_srt(text, tts_path, language, actual_duration) join_path.append(tts_path) self.concatenate_audio_files(join_path, dub_save_path) @staticmethod def convert_to_millisecond(time_str): if isinstance(time_str, str): hours, minutes, second_millisecond = time_str.split(':') seconds, milliseconds = second_millisecond.split(",") total_milliseconds = ( int(hours) * 3600000 + int(minutes) * 60000 + int(seconds) * 1000 + int(milliseconds) ) return total_milliseconds @staticmethod def read_srt_file(file_path): entries = [] default_start = 0 previous_end_time = default_start entry_number = 1 audio_name_template = "{}.wav" previous_pause_template = "{}_before_pause.wav" with open(file_path, 'r', encoding='utf-8') as file: lines = file.readlines() # print(lines) for i in range(0, len(lines), 4): time_info = re.findall(r'(\d+:\d+:\d+,\d+) --> (\d+:\d+:\d+,\d+)', lines[i + 1]) start_time = SRTDubbing.convert_to_millisecond(time_info[0][0]) end_time = SRTDubbing.convert_to_millisecond(time_info[0][1]) current_entry = { 'entry_number': entry_number, 'start_time': start_time, 'end_time': end_time, 'text': lines[i + 2].strip(), 'pause_time': start_time - previous_end_time if entry_number != 1 else start_time - default_start, 'audio_name': audio_name_template.format(entry_number), 'previous_pause': previous_pause_template.format(entry_number), } entries.append(current_entry) previous_end_time = end_time entry_number += 1 with open("entries.json", "w") as file: json.dump(entries, file, indent=4) return entries srt_voice_name="af" use_ffmpeg,local_ffmpeg_path = is_ffmpeg_installed() # use_ffmpeg=False def srt_process(srt_file_path,voice_name,custom_voicepack=None,dest_language="en"): global srt_voice_name,use_ffmpeg if not srt_file_path.endswith(".srt"): gr.Error("Please upload a valid .srt file",duration=5) return None if use_ffmpeg: gr.Success("Using FFmpeg for audio speedup to sync with subtitle") else: gr.Warning("Install FFmpeg to ensure high-quality audio when speeding up the audio to sync with subtitle. Default Using 'librosa' for speedup",duration= 20) if custom_voicepack: if manage_files(custom_voicepack): srt_voice_name = custom_voicepack else: srt_voice_name=voice_name gr.Warning("Upload small size .pt file only. Using the Current voice pack instead.") srt_dubbing = SRTDubbing() dub_save_path=get_subtitle_Dub_path(srt_file_path,dest_language) srt_dubbing.srt_to_dub(srt_file_path,dub_save_path,dest_language) return dub_save_path # # srt_file_path="./long.srt" # dub_audio_path=srt_process(srt_file_path) # print(f"Audio file saved at: {dub_audio_path}") with gr.Blocks() as demo3: gr.Markdown( """ # Generate Audio File From Subtitle [Upload Only .srt file] To generate subtitles, you can use the [Whisper Turbo Subtitle](https://github.com/NeuralFalconYT/Whisper-Turbo-Subtitle) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NeuralFalconYT/Whisper-Turbo-Subtitle/blob/main/Whisper_Turbo_Subtitle.ipynb) """ ) with gr.Row(): with gr.Column(): srt_file = gr.File(label='Upload .srt Subtitle File Only') with gr.Row(): voice = gr.Dropdown( voice_list, value='af', allow_custom_value=False, label='Voice', ) with gr.Row(): generate_btn_ = gr.Button('Generate', variant='primary') with gr.Accordion('Audio Settings', open=False): custom_voicepack = gr.File(label='Upload Custom VoicePack .pt file') with gr.Column(): audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True) with gr.Accordion('Enable Autoplay', open=False): autoplay = gr.Checkbox(value=True, label='Autoplay') autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio]) # srt_file.submit( # srt_process, # inputs=[srt_file, voice], # outputs=[audio] # ) generate_btn_.click( srt_process, inputs=[srt_file,voice,custom_voicepack], outputs=[audio] ) #### Voice mixing # modified from here # https://huggingface.co./spaces/ysharma/Make_Custom_Voices_With_KokoroTTS def get_voices(): voices = {} for i in os.listdir("./KOKORO/voices"): if i.endswith(".pt"): voice_name = i.replace(".pt", "") voices[voice_name] = torch.load(f"./KOKORO/voices/{i}", weights_only=True).to(device) slider_configs = {} # Iterate through the predefined list of voices for i in voices: # Handle the default case for "af" if i == "af": slider_configs["af"]= "Default 👩🇺🇸" continue if i == "af_nicole": slider_configs["af_nicole"]="Nicole 😏🇺🇸" continue if i == "af_bella": slider_configs["af_bella"]="Bella 🤗🇺🇸" continue # Determine the country emoji country = "🇺🇸" if i.startswith("a") else "🇬🇧" # Determine the gender emoji and name if "f_" in i: display_name = f"{i.split('_')[-1].capitalize()} 👩{country}" elif "m_" in i: display_name = f"{i.split('_')[-1].capitalize()} 👨{country}" else: display_name = f"{i.capitalize()} 😐" # Append the voice tuple to the list slider_configs[i]= display_name return voices, slider_configs voices, slider_configs = get_voices() def parse_voice_formula(formula): global voices """Parse the voice formula string and return the combined voice tensor.""" if not formula.strip(): raise ValueError("Empty voice formula") # Initialize the weighted sum weighted_sum = None # Split the formula into terms terms = formula.split('+') weights=0 for term in terms: # Parse each term (format: "voice_name * 0.333") parts = term.strip().split('*') if len(parts) != 2: raise ValueError(f"Invalid term format: {term.strip()}. Should be 'voice_name * weight'") voice_name = parts[0].strip() weight = float(parts[1].strip()) weights+=weight # print(voice_name) # print(weight) # Get the voice tensor if voice_name not in voices: raise ValueError(f"Unknown voice: {voice_name}") voice_tensor = voices[voice_name] # Add to weighted sum if weighted_sum is None: weighted_sum = weight * voice_tensor else: weighted_sum += weight * voice_tensor return weighted_sum/weights def get_new_voice(formula): # print(formula) try: # Parse the formula and get the combined voice tensor weighted_voices = parse_voice_formula(formula) voice_pack_name = "./weighted_normalised_voices.pt" # Save and load the combined voice torch.save(weighted_voices, voice_pack_name) # print(f"Voice pack saved at: {voice_pack_name}") return voice_pack_name except Exception as e: raise gr.Error(f"Failed to create voice: {str(e)}") def generate_voice_formula(*values): """ Generate a formatted string showing the normalized voice combination. Returns: String like "0.6 * voice1" or "0.4 * voice1 + 0.6 * voice2" """ n = len(values) // 2 checkbox_values = values[:n] slider_values = list(values[n:]) global slider_configs # Get active sliders and their names active_pairs = [(slider_values[i], slider_configs[i][0]) for i in range(len(slider_configs)) if checkbox_values[i]] if not active_pairs: return "" # If only one voice is selected, use its actual value if len(active_pairs) == 1: value, name = active_pairs[0] return f"{value:.3f} * {name}" # Calculate sum for normalization of multiple voices total_sum = sum(value for value, _ in active_pairs) if total_sum == 0: return "" # Generate normalized formula for multiple voices terms = [] for value, name in active_pairs: normalized_value = value / total_sum terms.append(f"{normalized_value:.3f} * {name}") return " + ".join(terms) def create_voice_mix_ui(): with gr.Blocks() as demo: gr.Markdown( """ # Kokoro Voice Mixer Select voices and adjust their weights to create a mixed voice. """ ) voice_components = {} voice_names = list(voices.keys()) female_voices = [name for name in voice_names if "f_" in name] male_voices = [name for name in voice_names if "b_" in name] neutral_voices = [name for name in voice_names if "f_" not in name and "b_" not in name] # Define how many columns you want num_columns = 3 # Function to generate UI def generate_ui_row(voice_list): num_voices = len(voice_list) num_rows = (num_voices + num_columns - 1) // num_columns for i in range(num_rows): with gr.Row(): for j in range(num_columns): index = i * num_columns + j if index < num_voices: voice_name = voice_list[index] with gr.Column(): checkbox = gr.Checkbox(label=slider_configs[voice_name]) weight_slider = gr.Slider( minimum=0, maximum=1, value=1.0, step=0.01, interactive=False ) voice_components[voice_name] = (checkbox, weight_slider) checkbox.change( lambda x, slider=weight_slider: gr.update(interactive=x), inputs=[checkbox], outputs=[weight_slider] ) generate_ui_row(female_voices) generate_ui_row(male_voices) generate_ui_row(neutral_voices) formula_inputs = [] for i in voice_components: checkbox, slider = voice_components[i] formula_inputs.append(checkbox) formula_inputs.append(slider) with gr.Row(): voice_formula = gr.Textbox(label="Voice Formula", interactive=False) # Function to dynamically update the voice formula def update_voice_formula(*args): formula_parts = [] for i, (checkbox, slider) in enumerate(voice_components.values()): if args[i * 2]: # If checkbox is selected formula_parts.append(f"{list(voice_components.keys())[i]} * {args[i * 2 + 1]:.3f}") return " + ".join(formula_parts) # Update formula whenever any checkbox or slider changes for checkbox, slider in voice_components.values(): checkbox.change( update_voice_formula, inputs=formula_inputs, outputs=[voice_formula] ) slider.change( update_voice_formula, inputs=formula_inputs, outputs=[voice_formula] ) with gr.Row(): voice_text = gr.Textbox( label='Enter Text', lines=3, placeholder="Type your text here to preview the custom voice..." ) voice_generator = gr.Button('Generate', variant='primary') with gr.Accordion('Audio Settings', open=False): model_name=gr.Dropdown(model_list,label="Model",value=model_list[0]) speed = gr.Slider( minimum=0.25, maximum=2, value=1, step=0.1, label='⚡️Speed', info='Adjust the speaking speed' ) remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS') with gr.Row(): voice_audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True) with gr.Row(): mix_voice_download = gr.File(label="Download VoicePack") with gr.Accordion('Enable Autoplay', open=False): autoplay = gr.Checkbox(value=True, label='Autoplay') autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[voice_audio]) def generate_custom_audio(text_input, formula_text, model_name, speed, remove_silence): try: new_voice_pack = get_new_voice(formula_text) audio_output_path =text_to_speech(text=text_input, model_name=model_name, voice_name="af", speed=speed, pad_between_segments=0, remove_silence=remove_silence, minimum_silence=0.05,custom_voicepack=new_voice_pack,trim=0.0) # audio_output_path = text_to_speech(text=text_input, model_name=model_name,voice_name="af", speed=1.0, custom_voicepack=new_voice_pack) return audio_output_path,new_voice_pack except Exception as e: raise gr.Error(f"Failed to generate audio: {e}") voice_generator.click( generate_custom_audio, inputs=[voice_text, voice_formula,model_name,speed,remove_silence], outputs=[voice_audio,mix_voice_download] ) return demo demo4 = create_voice_mix_ui() # display_text = " \n".join(voice_list) # with gr.Blocks() as demo5: # gr.Markdown("[Install on Windows/Linux](https://github.com/NeuralFalconYT/Kokoro-82M-WebUI)") # gr.Markdown(f"# Voice Names \n{display_text}") import os import json def get_voice_names(): male_voices, female_voices, other_voices = [], [], [] for filename in os.listdir("./KOKORO/voices"): if filename.endswith('.pt'): name = os.path.splitext(filename)[0] if "m_" in name: male_voices.append(name) elif name=="af": female_voices.append(name) elif "f_" in name: female_voices.append(name) else: other_voices.append(name) # Sort the lists by the length of the voice names male_voices = sorted(male_voices, key=len) female_voices = sorted(female_voices, key=len) other_voices = sorted(other_voices, key=len) return json.dumps({ "male_voices": male_voices, "female_voices": female_voices, "other_voices": other_voices }, indent=4) # display_text = " \n".join(voice_list) with gr.Blocks() as demo5: gr.Markdown(f"# Voice Names") gr.Markdown("[Install on Windows/Linux](https://github.com/NeuralFalconYT/Kokoro-82M-WebUI)") get_voice_button = gr.Button("Get Voice Names") voice_names = gr.Textbox(label="Voice Names", placeholder="Click 'Get Voice Names' to display the list of available voice names", lines=10) get_voice_button.click(get_voice_names, outputs=[voice_names]) import click @click.command() @click.option("--debug", is_flag=True, default=False, help="Enable debug mode.") @click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.") def main(debug, share): demo = gr.TabbedInterface([demo1, demo2,demo3,demo4,demo5], ["Batched TTS", "Multiple Speech-Type Generation","SRT Dubbing","Voice Mix","Available Voice Names"],title="Kokoro TTS",theme='JohnSmith9982/small_and_pretty') demo.queue().launch(debug=debug, share=share) #Run on local network # laptop_ip="192.168.0.30" # port=8080 # demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port) if __name__ == "__main__": main() ##For client side # from gradio_client import Client # import shutil # import os # os.makedirs("temp_audio", exist_ok=True) # from gradio_client import Client # client = Client("http://127.0.0.1:7860/") # result = client.predict( # text="Hello!!", # model_name="kokoro-v0_19.pth", # voice_name="af_bella", # speed=1, # trim=0, # pad_between_segments=0, # remove_silence=False, # minimum_silence=0.05, # api_name="/text_to_speech" # ) # save_at=f"./temp_audio/{os.path.basename(result)}" # shutil.move(result, save_at) # print(f"Saved at {save_at}")