# It is helpful if you want to use it in a voice assistant project. # Know more about {your gradio app url}/?view=api. Example: http://127.0.0.1:7860/?view=api import shutil import os from gradio_client import Client # Ensure the output directory exists output_dir = "temp_audio" os.makedirs(output_dir, exist_ok=True) # Initialize the Gradio client api_url = "http://127.0.0.1:7860/" client = Client(api_url) def text_to_speech( text="Hello!!", model_name="kokoro-v0_19.pth", voice_name="af_bella", speed=1, trim=0, pad_between_segments=0, remove_silence=False, minimum_silence=0.05, ): """ Generates speech from text using a specified model and saves the audio file. Parameters: text (str): The text to convert to speech. model_name (str): The name of the model to use for synthesis. voice_name (str): The name of the voice to use. speed (float): The speed of speech. trim (int): Whether to trim silence at the beginning and end. pad_between_segments (int): Padding between audio segments. remove_silence (bool): Whether to remove silence from the audio. minimum_silence (float): Minimum silence duration to consider. Returns: str: Path to the saved audio file. """ # Call the API with provided parameters result = client.predict( text=text, model_name=model_name, voice_name=voice_name, speed=speed, trim=trim, pad_between_segments=pad_between_segments, remove_silence=remove_silence, minimum_silence=minimum_silence, api_name="/text_to_speech" ) # Save the audio file in the specified directory save_at = f"{output_dir}/{os.path.basename(result)}" shutil.move(result, save_at) print(f"Saved at {save_at}") return save_at # Example usage if __name__ == "__main__": text="This is Kokoro TTS. I am a text-to-speech model and Super Fast." model_name="kokoro-v0_19.pth" #kokoro-v0_19-half.pth voice_name="af_bella" #get voice names speed=1 only_trim_both_ends_silence=0 add_silence_between_segments=0 #it use in large text remove_silence=False keep_silence_upto=0.05 #in seconds audio_path = text_to_speech(text=text, model_name=model_name, voice_name=voice_name, speed=speed, trim=only_trim_both_ends_silence, pad_between_segments=add_silence_between_segments, remove_silence=remove_silence, minimum_silence=keep_silence_upto) print(f"Audio file saved at: {audio_path}")