Spaces:
Running
Running
import phonemizer | |
import re | |
import torch | |
import os | |
import platform | |
# Check if the system is Windows | |
is_windows = platform.system() == "Windows" | |
# If Windows, set the environment variables | |
if is_windows: | |
os.environ["PHONEMIZER_ESPEAK_LIBRARY"] = r"C:\Program Files\eSpeak NG\libespeak-ng.dll" | |
os.environ["PHONEMIZER_ESPEAK_PATH"] = r"C:\Program Files\eSpeak NG\espeak-ng.exe" | |
def split_num(num): | |
num = num.group() | |
if '.' in num: | |
return num | |
elif ':' in num: | |
h, m = [int(n) for n in num.split(':')] | |
if m == 0: | |
return f"{h} o'clock" | |
elif m < 10: | |
return f'{h} oh {m}' | |
return f'{h} {m}' | |
year = int(num[:4]) | |
if year < 1100 or year % 1000 < 10: | |
return num | |
left, right = num[:2], int(num[2:4]) | |
s = 's' if num.endswith('s') else '' | |
if 100 <= year % 1000 <= 999: | |
if right == 0: | |
return f'{left} hundred{s}' | |
elif right < 10: | |
return f'{left} oh {right}{s}' | |
return f'{left} {right}{s}' | |
def flip_money(m): | |
m = m.group() | |
bill = 'dollar' if m[0] == '$' else 'pound' | |
if m[-1].isalpha(): | |
return f'{m[1:]} {bill}s' | |
elif '.' not in m: | |
s = '' if m[1:] == '1' else 's' | |
return f'{m[1:]} {bill}{s}' | |
b, c = m[1:].split('.') | |
s = '' if b == '1' else 's' | |
c = int(c.ljust(2, '0')) | |
coins = f"cent{'' if c == 1 else 's'}" if m[0] == '$' else ('penny' if c == 1 else 'pence') | |
return f'{b} {bill}{s} and {c} {coins}' | |
def point_num(num): | |
a, b = num.group().split('.') | |
return ' point '.join([a, ' '.join(b)]) | |
def normalize_text(text): | |
text = text.replace(chr(8216), "'").replace(chr(8217), "'") | |
text = text.replace('«', chr(8220)).replace('»', chr(8221)) | |
text = text.replace(chr(8220), '"').replace(chr(8221), '"') | |
text = text.replace('(', '«').replace(')', '»') | |
for a, b in zip('、。!,:;?', ',.!,:;?'): | |
text = text.replace(a, b+' ') | |
text = re.sub(r'[^\S \n]', ' ', text) | |
text = re.sub(r' +', ' ', text) | |
text = re.sub(r'(?<=\n) +(?=\n)', '', text) | |
text = re.sub(r'\bD[Rr]\.(?= [A-Z])', 'Doctor', text) | |
text = re.sub(r'\b(?:Mr\.|MR\.(?= [A-Z]))', 'Mister', text) | |
text = re.sub(r'\b(?:Ms\.|MS\.(?= [A-Z]))', 'Miss', text) | |
text = re.sub(r'\b(?:Mrs\.|MRS\.(?= [A-Z]))', 'Mrs', text) | |
text = re.sub(r'\betc\.(?! [A-Z])', 'etc', text) | |
text = re.sub(r'(?i)\b(y)eah?\b', r"\1e'a", text) | |
text = re.sub(r'\d*\.\d+|\b\d{4}s?\b|(?<!:)\b(?:[1-9]|1[0-2]):[0-5]\d\b(?!:)', split_num, text) | |
text = re.sub(r'(?<=\d),(?=\d)', '', text) | |
text = re.sub(r'(?i)[$£]\d+(?:\.\d+)?(?: hundred| thousand| (?:[bm]|tr)illion)*\b|[$£]\d+\.\d\d?\b', flip_money, text) | |
text = re.sub(r'\d*\.\d+', point_num, text) | |
text = re.sub(r'(?<=\d)-(?=\d)', ' to ', text) | |
text = re.sub(r'(?<=\d)S', ' S', text) | |
text = re.sub(r"(?<=[BCDFGHJ-NP-TV-Z])'?s\b", "'S", text) | |
text = re.sub(r"(?<=X')S\b", 's', text) | |
text = re.sub(r'(?:[A-Za-z]\.){2,} [a-z]', lambda m: m.group().replace('.', '-'), text) | |
text = re.sub(r'(?i)(?<=[A-Z])\.(?=[A-Z])', '-', text) | |
return text.strip() | |
def get_vocab(): | |
_pad = "$" | |
_punctuation = ';:,.!?¡¿—…"«»“” ' | |
_letters = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz' | |
_letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" | |
symbols = [_pad] + list(_punctuation) + list(_letters) + list(_letters_ipa) | |
dicts = {} | |
for i in range(len((symbols))): | |
dicts[symbols[i]] = i | |
return dicts | |
VOCAB = get_vocab() | |
def tokenize(ps): | |
return [i for i in map(VOCAB.get, ps) if i is not None] | |
phonemizers = dict( | |
a=phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True), | |
b=phonemizer.backend.EspeakBackend(language='en-gb', preserve_punctuation=True, with_stress=True), | |
) | |
def phonemize(text, lang, norm=True): | |
if norm: | |
text = normalize_text(text) | |
ps = phonemizers[lang].phonemize([text]) | |
ps = ps[0] if ps else '' | |
# https://en.wiktionary.org/wiki/kokoro#English | |
ps = ps.replace('kəkˈoːɹoʊ', 'kˈoʊkəɹoʊ').replace('kəkˈɔːɹəʊ', 'kˈəʊkəɹəʊ') | |
ps = ps.replace('ʲ', 'j').replace('r', 'ɹ').replace('x', 'k').replace('ɬ', 'l') | |
ps = re.sub(r'(?<=[a-zɹː])(?=hˈʌndɹɪd)', ' ', ps) | |
ps = re.sub(r' z(?=[;:,.!?¡¿—…"«»“” ]|$)', 'z', ps) | |
if lang == 'a': | |
ps = re.sub(r'(?<=nˈaɪn)ti(?!ː)', 'di', ps) | |
ps = ''.join(filter(lambda p: p in VOCAB, ps)) | |
return ps.strip() | |
def length_to_mask(lengths): | |
mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) | |
mask = torch.gt(mask+1, lengths.unsqueeze(1)) | |
return mask | |
def forward(model, tokens, ref_s, speed): | |
device = ref_s.device | |
tokens = torch.LongTensor([[0, *tokens, 0]]).to(device) | |
input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) | |
text_mask = length_to_mask(input_lengths).to(device) | |
bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) | |
d_en = model.bert_encoder(bert_dur).transpose(-1, -2) | |
s = ref_s[:, 128:] | |
d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) | |
x, _ = model.predictor.lstm(d) | |
duration = model.predictor.duration_proj(x) | |
duration = torch.sigmoid(duration).sum(axis=-1) / speed | |
pred_dur = torch.round(duration).clamp(min=1).long() | |
pred_aln_trg = torch.zeros(input_lengths, pred_dur.sum().item()) | |
c_frame = 0 | |
for i in range(pred_aln_trg.size(0)): | |
pred_aln_trg[i, c_frame:c_frame + pred_dur[0,i].item()] = 1 | |
c_frame += pred_dur[0,i].item() | |
en = d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device) | |
F0_pred, N_pred = model.predictor.F0Ntrain(en, s) | |
t_en = model.text_encoder(tokens, input_lengths, text_mask) | |
asr = t_en @ pred_aln_trg.unsqueeze(0).to(device) | |
return model.decoder(asr, F0_pred, N_pred, ref_s[:, :128]).squeeze().cpu().numpy() | |
def generate(model, text, voicepack, lang='a', speed=1, ps=None): | |
ps = ps or phonemize(text, lang) | |
tokens = tokenize(ps) | |
if not tokens: | |
return None | |
elif len(tokens) > 510: | |
tokens = tokens[:510] | |
print('Truncated to 510 tokens') | |
ref_s = voicepack[len(tokens)] | |
out = forward(model, tokens, ref_s, speed) | |
ps = ''.join(next(k for k, v in VOCAB.items() if i == v) for i in tokens) | |
return out, ps | |