Kokoro-TTS / api.py
NeuralFalcon's picture
Upload 8 files
6d89762 verified
raw
history blame
2.71 kB
# It is helpful if you want to use it in a voice assistant project.
# Know more about {your gradio app url}/?view=api. Example: http://127.0.0.1:7860/?view=api
import shutil
import os
from gradio_client import Client
# Ensure the output directory exists
output_dir = "temp_audio"
os.makedirs(output_dir, exist_ok=True)
# Initialize the Gradio client
api_url = "http://127.0.0.1:7860/"
client = Client(api_url)
def text_to_speech(
text="Hello!!",
model_name="kokoro-v0_19.pth",
voice_name="af_bella",
speed=1,
trim=0,
pad_between_segments=0,
remove_silence=False,
minimum_silence=0.05,
):
"""
Generates speech from text using a specified model and saves the audio file.
Parameters:
text (str): The text to convert to speech.
model_name (str): The name of the model to use for synthesis.
voice_name (str): The name of the voice to use.
speed (float): The speed of speech.
trim (int): Whether to trim silence at the beginning and end.
pad_between_segments (int): Padding between audio segments.
remove_silence (bool): Whether to remove silence from the audio.
minimum_silence (float): Minimum silence duration to consider.
Returns:
str: Path to the saved audio file.
"""
# Call the API with provided parameters
result = client.predict(
text=text,
model_name=model_name,
voice_name=voice_name,
speed=speed,
trim=trim,
pad_between_segments=pad_between_segments,
remove_silence=remove_silence,
minimum_silence=minimum_silence,
api_name="/text_to_speech"
)
# Save the audio file in the specified directory
save_at = f"{output_dir}/{os.path.basename(result)}"
shutil.move(result, save_at)
print(f"Saved at {save_at}")
return save_at
# Example usage
if __name__ == "__main__":
text="This is Kokoro TTS. I am a text-to-speech model and Super Fast."
model_name="kokoro-v0_19.pth" #kokoro-v0_19-half.pth
voice_name="af_bella" #get voice names
speed=1
only_trim_both_ends_silence=0
add_silence_between_segments=0 #it use in large text
remove_silence=False
keep_silence_upto=0.05 #in seconds
audio_path = text_to_speech(text=text, model_name=model_name,
voice_name=voice_name, speed=speed,
trim=only_trim_both_ends_silence,
pad_between_segments=add_silence_between_segments,
remove_silence=remove_silence,
minimum_silence=keep_silence_upto)
print(f"Audio file saved at: {audio_path}")