Spaces:
Running
Running
File size: 37,337 Bytes
3a5f7f4 6d89762 49ef1cb 34b524b 6d89762 3a5f7f4 0076ef1 3a5f7f4 6d89762 3a5f7f4 6d89762 3a5f7f4 6d89762 3a5f7f4 49ef1cb 3a5f7f4 6d89762 3a5f7f4 6d89762 b83c472 0076ef1 6d89762 0076ef1 6d89762 3a5f7f4 6d89762 3a5f7f4 852635a 6d89762 3a5f7f4 6d89762 3a5f7f4 6d89762 3a5f7f4 6d89762 3a5f7f4 6d89762 0076ef1 6d89762 b5ba0ba 6d89762 0076ef1 6d89762 49ef1cb b3f10b4 49ef1cb 0076ef1 49ef1cb 3a5f7f4 49ef1cb 3a5f7f4 49ef1cb 3a5f7f4 49ef1cb 0076ef1 3a5f7f4 0076ef1 49ef1cb 6d89762 49ef1cb 3a5f7f4 49ef1cb 0076ef1 49ef1cb 3a5f7f4 49ef1cb 3a5f7f4 49ef1cb 3a5f7f4 49ef1cb 3a5f7f4 0076ef1 5babdce 0076ef1 5babdce 3a5f7f4 5babdce 3a5f7f4 5babdce b83c472 5babdce 3a5f7f4 6d89762 49ef1cb 3a5f7f4 9f77662 6d89762 0076ef1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 |
from KOKORO.models import build_model
from KOKORO.utils import tts,tts_file_name,podcast
import sys
sys.path.append('.')
import os
os.system("python download_model.py")
import torch
import gc
import platform
import shutil
base_path=os.getcwd()
def clean_folder_before_start():
global base_path
# folder_list=["dummy","TTS_DUB","kokoro_audio"]
folder_list=["dummy","TTS_DUB"]#,"kokoro_audio"]
for folder in folder_list:
if os.path.exists(f"{base_path}/{folder}"):
try:
shutil.rmtree(f"{base_path}/{folder}")
except:
pass
os.makedirs(f"{base_path}/{folder}", exist_ok=True)
clean_folder_before_start()
print("Loading model...")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using device: {device}')
MODEL = build_model('./KOKORO/kokoro-v0_19.pth', device)
print("Model loaded successfully.")
def tts_maker(text,voice_name="af_bella",speed = 0.8,trim=0,pad_between=0,save_path="temp.wav",remove_silence=False,minimum_silence=50):
# Sanitize the save_path to remove any newline characters
save_path = save_path.replace('\n', '').replace('\r', '')
global MODEL
audio_path=tts(MODEL,device,text,voice_name,speed=speed,trim=trim,pad_between_segments=pad_between,output_file=save_path,remove_silence=remove_silence,minimum_silence=minimum_silence)
return audio_path
model_list = ["kokoro-v0_19.pth", "kokoro-v0_19-half.pth"]
current_model = model_list[0]
def update_model(model_name):
"""
Updates the TTS model only if the specified model is not already loaded.
"""
global MODEL, current_model
if current_model == model_name:
return f"Model already set to {model_name}" # No need to reload
model_path = f"./KOKORO/{model_name}" # Default model path
if model_name == "kokoro-v0_19-half.pth":
model_path = f"./KOKORO/fp16/{model_name}" # Update path for specific model
# print(f"Loading new model: {model_name}")
del MODEL # Cleanup existing model
gc.collect()
torch.cuda.empty_cache() # Ensure GPU memory is cleared
MODEL = build_model(model_path, device)
current_model = model_name
return f"Model updated to {model_name}"
def manage_files(file_path):
if os.path.exists(file_path):
file_extension = os.path.splitext(file_path)[1] # Get file extension
file_size = os.path.getsize(file_path) # Get file size in bytes
# Check if file is a valid .pt file and its size is ≤ 5 MB
if file_extension == ".pt" and file_size <= 5 * 1024 * 1024:
return True # File is valid and kept
else:
os.remove(file_path) # Delete invalid or oversized file
return False
return False # File does not exist
def text_to_speech(text, model_name="kokoro-v0_19.pth", voice_name="af", speed=1.0, pad_between_segments=0, remove_silence=True, minimum_silence=0.20,custom_voicepack=None,trim=0.0):
"""
Converts text to speech using the specified parameters and ensures the model is updated only if necessary.
"""
update_status = update_model(model_name) # Load the model only if required
# print(update_status) # Log model loading status
if not minimum_silence:
minimum_silence = 0.05
keep_silence = int(minimum_silence * 1000)
save_at = tts_file_name(text)
# print(voice_name,custom_voicepack)
if custom_voicepack:
if manage_files(custom_voicepack):
voice_name = custom_voicepack
else:
gr.Warning("Upload small size .pt file only. Using the Current voice pack instead.")
audio_path = tts_maker(
text,
voice_name,
speed,
trim,
pad_between_segments,
save_at,
remove_silence,
keep_silence
)
return audio_path
import gradio as gr
# voice_list = [
# 'af', # Default voice is a 50-50 mix of af_bella & af_sarah
# 'af_bella', 'af_sarah', 'am_adam', 'am_michael',
# 'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
# ]
import os
# Get the list of voice names without file extensions
voice_list = [
os.path.splitext(filename)[0]
for filename in os.listdir("./KOKORO/voices")
if filename.endswith('.pt')
]
# Sort the list based on the length of each name
voice_list = sorted(voice_list, key=len)
def toggle_autoplay(autoplay):
return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)
with gr.Blocks() as demo1:
gr.Markdown("# Batched TTS")
gr.Markdown("[Install on Windows/Linux](https://github.com/NeuralFalconYT/Kokoro-82M-WebUI)")
with gr.Row():
with gr.Column():
text = gr.Textbox(
label='Enter Text',
lines=3,
placeholder="Type your text here..."
)
with gr.Row():
voice = gr.Dropdown(
voice_list,
value='af_bella',
allow_custom_value=False,
label='Voice',
info='Starred voices are more stable'
)
with gr.Row():
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Audio Settings', open=False):
model_name=gr.Dropdown(model_list,label="Model",value=model_list[0])
speed = gr.Slider(
minimum=0.25, maximum=2, value=1, step=0.1,
label='⚡️Speed', info='Adjust the speaking speed'
)
remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
minimum_silence = gr.Number(
label="Keep Silence Upto (In seconds)",
value=0.05
)
# trim = gr.Slider(
# minimum=0, maximum=1, value=0, step=0.1,
# label='🔪 Trim', info='How much to cut from both ends of each segment'
# )
pad_between = gr.Slider(
minimum=0, maximum=2, value=0, step=0.1,
label='🔇 Pad Between', info='Silent Duration between segments [For Large Text]'
)
custom_voicepack = gr.File(label='Upload Custom VoicePack .pt file')
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
text.submit(
text_to_speech,
inputs=[text, model_name,voice, speed, pad_between, remove_silence, minimum_silence,custom_voicepack],
outputs=[audio]
)
generate_btn.click(
text_to_speech,
inputs=[text,model_name, voice, speed, pad_between, remove_silence, minimum_silence,custom_voicepack],
outputs=[audio]
)
def podcast_maker(text,remove_silence=False,minimum_silence=50,model_name="kokoro-v0_19.pth"):
global MODEL,device
update_model(model_name)
if not minimum_silence:
minimum_silence = 0.05
keep_silence = int(minimum_silence * 1000)
podcast_save_at=podcast(MODEL, device,text,remove_silence=remove_silence, minimum_silence=keep_silence)
return podcast_save_at
dummpy_example="""{af_alloy} Hello, I'd like to order a sandwich please.
{af_sky} What do you mean you're out of bread?
{af_bella} I really wanted a sandwich though...
{af_nicole} You know what, darn you and your little shop!
{bm_george} I'll just go back home and cry now.
{am_adam} Why me?"""
with gr.Blocks() as demo2:
gr.Markdown(
"""
# Multiple Speech-Type Generation
This section allows you to generate multiple speech types or different VOICE PACK's at same text Input. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use "af" voice.
Format:
{voice_name} your text here
"""
)
with gr.Row():
gr.Markdown(
"""
**Example Input:**
{af_alloy} Hello, I'd like to order a sandwich please.
{af_sky} What do you mean you're out of bread?
{af_bella} I really wanted a sandwich though...
{af_nicole} You know what, darn you and your little shop!
{bm_george} I'll just go back home and cry now.
{am_adam} Why me?!
"""
)
with gr.Row():
with gr.Column():
text = gr.Textbox(
label='Enter Text',
lines=7,
placeholder=dummpy_example
)
with gr.Row():
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Audio Settings', open=False):
remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
minimum_silence = gr.Number(
label="Keep Silence Upto (In seconds)",
value=0.20
)
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
text.submit(
podcast_maker,
inputs=[text, remove_silence, minimum_silence],
outputs=[audio]
)
generate_btn.click(
podcast_maker,
inputs=[text, remove_silence, minimum_silence],
outputs=[audio]
)
import shutil
import os
# Ensure the output directory exists
output_dir = "./temp_audio"
os.makedirs(output_dir, exist_ok=True)
#@title Generate Audio File From Subtitle
# from tqdm.notebook import tqdm
from tqdm import tqdm
import subprocess
import json
import pysrt
import os
from pydub import AudioSegment
import shutil
import uuid
import re
import time
# os.chdir(install_path)
# def your_tts(text,audio_path,actual_duration,speed=1.0):
# global srt_voice_name
# model_name="kokoro-v0_19.pth"
# tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speed,trim=1.0)
# # print(tts_path)
# tts_audio = AudioSegment.from_file(tts_path)
# tts_duration = len(tts_audio)
# if tts_duration > actual_duration:
# speedup_factor = tts_duration / actual_duration
# tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speedup_factor,trim=1.0)
# # print(tts_path)
# shutil.copy(tts_path,audio_path)
def your_tts(text, audio_path, actual_duration, speed=1.0):
global srt_voice_name
model_name = "kokoro-v0_19.pth"
# Generate TTS audio
tts_path = text_to_speech(text, model_name, voice_name=srt_voice_name, speed=speed, trim=1.0)
tts_audio = AudioSegment.from_file(tts_path)
tts_duration = len(tts_audio)
if actual_duration > 0:
if tts_duration > actual_duration:
speedup_factor = tts_duration / actual_duration
tts_path = text_to_speech(text, model_name, voice_name=srt_voice_name, speed=speedup_factor, trim=1.0)
else:
pass
shutil.copy(tts_path, audio_path)
base_path="."
import datetime
def get_current_time():
# Return current time as a string in the format HH_MM_AM/PM
return datetime.datetime.now().strftime("%I_%M_%p")
def get_subtitle_Dub_path(srt_file_path,Language="en"):
file_name = os.path.splitext(os.path.basename(srt_file_path))[0]
if not os.path.exists(f"{base_path}/TTS_DUB"):
os.mkdir(f"{base_path}/TTS_DUB")
random_string = str(uuid.uuid4())[:6]
new_path=f"{base_path}/TTS_DUB/{file_name}_{Language}_{get_current_time()}_{random_string}.wav"
return new_path
def clean_srt(input_path):
file_name = os.path.basename(input_path)
output_folder = f"{base_path}/save_srt"
if not os.path.exists(output_folder):
os.mkdir(output_folder)
output_path = f"{output_folder}/{file_name}"
def clean_srt_line(text):
bad_list = ["[", "]", "♫", "\n"]
for i in bad_list:
text = text.replace(i, "")
return text.strip()
# Load the subtitle file
subs = pysrt.open(input_path)
# Iterate through each subtitle and print its details
with open(output_path, "w", encoding='utf-8') as file:
for sub in subs:
file.write(f"{sub.index}\n")
file.write(f"{sub.start} --> {sub.end}\n")
file.write(f"{clean_srt_line(sub.text)}\n")
file.write("\n")
file.close()
# print(f"Clean SRT saved at: {output_path}")
return output_path
# Example usage
import librosa
import soundfile as sf
import subprocess
def speedup_audio_librosa(input_file, output_file, speedup_factor):
try:
# Load the audio file
y, sr = librosa.load(input_file, sr=None)
# Use time stretching to speed up audio without changing pitch
y_stretched = librosa.effects.time_stretch(y, rate=speedup_factor)
# Save the output with the original sample rate
sf.write(output_file, y_stretched, sr)
# print(f"Speed up by {speedup_factor} completed successfully: {output_file}")
except Exception as e:
gr.Warning(f"Error during speedup with Librosa: {e}")
shutil.copy(input_file, output_file)
def is_ffmpeg_installed():
if platform.system() == "Windows":
local_ffmpeg_path = os.path.join("./ffmpeg", "ffmpeg.exe")
else:
local_ffmpeg_path = "ffmpeg"
try:
subprocess.run([local_ffmpeg_path, "-version"], stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True, check=True)
# print("FFmpeg is installed")
return True,local_ffmpeg_path
except (FileNotFoundError, subprocess.CalledProcessError):
# print("FFmpeg is not installed. Using 'librosa' for speedup audio in SRT dubbing")
gr.Warning("FFmpeg is not installed. Using 'librosa' for speedup audio in SRT dubbing",duration= 20)
return False,local_ffmpeg_path
# ffmpeg -i test.wav -filter:a "atempo=2.0" ffmpeg.wav -y
def change_speed(input_file, output_file, speedup_factor):
global use_ffmpeg,local_ffmpeg_path
if use_ffmpeg:
# print("Using FFmpeg for speedup")
try:
# subprocess.run([
# local_ffmpeg_path,
# "-i", input_file,
# "-filter:a", f"atempo={speedup_factor}",
# output_file,
# "-y"
# ], check=True)
subprocess.run([
local_ffmpeg_path,
"-i", input_file,
"-filter:a", f"atempo={speedup_factor}",
output_file,
"-y"
], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
except Exception as e:
gr.Error(f"Error during speedup with FFmpeg: {e}")
speedup_audio_librosa(input_file, output_file, speedup_factor)
else:
# print("Using Librosa for speedup")
speedup_audio_librosa(input_file, output_file, speedup_factor)
class SRTDubbing:
def __init__(self):
pass
@staticmethod
def text_to_speech_srt(text, audio_path, language, actual_duration):
tts_filename = "./cache/temp.wav"
your_tts(text,tts_filename,actual_duration,speed=1.0)
# Check the duration of the generated TTS audio
tts_audio = AudioSegment.from_file(tts_filename)
tts_duration = len(tts_audio)
if actual_duration == 0:
# If actual duration is zero, use the original TTS audio without modifications
shutil.move(tts_filename, audio_path)
return
# If TTS audio duration is longer than actual duration, speed up the audio
if tts_duration > actual_duration:
speedup_factor = tts_duration / actual_duration
speedup_filename = "./cache/speedup_temp.wav"
change_speed(tts_filename, speedup_filename, speedup_factor)
# Use ffmpeg to change audio speed
# subprocess.run([
# "ffmpeg",
# "-i", tts_filename,
# "-filter:a", f"atempo={speedup_factor}",
# speedup_filename,
# "-y"
# ], check=True)
# Replace the original TTS audio with the sped-up version
shutil.move(speedup_filename, audio_path)
elif tts_duration < actual_duration:
# If TTS audio duration is less than actual duration, add silence to match the duration
silence_gap = actual_duration - tts_duration
silence = AudioSegment.silent(duration=int(silence_gap))
new_audio = tts_audio + silence
# Save the new audio with added silence
new_audio.export(audio_path, format="wav")
else:
# If TTS audio duration is equal to actual duration, use the original TTS audio
shutil.move(tts_filename, audio_path)
@staticmethod
def make_silence(pause_time, pause_save_path):
silence = AudioSegment.silent(duration=pause_time)
silence.export(pause_save_path, format="wav")
return pause_save_path
@staticmethod
def create_folder_for_srt(srt_file_path):
srt_base_name = os.path.splitext(os.path.basename(srt_file_path))[0]
random_uuid = str(uuid.uuid4())[:4]
dummy_folder_path = f"{base_path}/dummy"
if not os.path.exists(dummy_folder_path):
os.makedirs(dummy_folder_path)
folder_path = os.path.join(dummy_folder_path, f"{srt_base_name}_{random_uuid}")
os.makedirs(folder_path, exist_ok=True)
return folder_path
@staticmethod
def concatenate_audio_files(audio_paths, output_path):
concatenated_audio = AudioSegment.silent(duration=0)
for audio_path in audio_paths:
audio_segment = AudioSegment.from_file(audio_path)
concatenated_audio += audio_segment
concatenated_audio.export(output_path, format="wav")
def srt_to_dub(self, srt_file_path,dub_save_path,language='en'):
result = self.read_srt_file(srt_file_path)
new_folder_path = self.create_folder_for_srt(srt_file_path)
join_path = []
for i in tqdm(result):
# for i in result:
text = i['text']
actual_duration = i['end_time'] - i['start_time']
pause_time = i['pause_time']
slient_path = f"{new_folder_path}/{i['previous_pause']}"
self.make_silence(pause_time, slient_path)
join_path.append(slient_path)
tts_path = f"{new_folder_path}/{i['audio_name']}"
self.text_to_speech_srt(text, tts_path, language, actual_duration)
join_path.append(tts_path)
self.concatenate_audio_files(join_path, dub_save_path)
@staticmethod
def convert_to_millisecond(time_str):
if isinstance(time_str, str):
hours, minutes, second_millisecond = time_str.split(':')
seconds, milliseconds = second_millisecond.split(",")
total_milliseconds = (
int(hours) * 3600000 +
int(minutes) * 60000 +
int(seconds) * 1000 +
int(milliseconds)
)
return total_milliseconds
@staticmethod
def read_srt_file(file_path):
entries = []
default_start = 0
previous_end_time = default_start
entry_number = 1
audio_name_template = "{}.wav"
previous_pause_template = "{}_before_pause.wav"
with open(file_path, 'r', encoding='utf-8') as file:
lines = file.readlines()
# print(lines)
for i in range(0, len(lines), 4):
time_info = re.findall(r'(\d+:\d+:\d+,\d+) --> (\d+:\d+:\d+,\d+)', lines[i + 1])
start_time = SRTDubbing.convert_to_millisecond(time_info[0][0])
end_time = SRTDubbing.convert_to_millisecond(time_info[0][1])
current_entry = {
'entry_number': entry_number,
'start_time': start_time,
'end_time': end_time,
'text': lines[i + 2].strip(),
'pause_time': start_time - previous_end_time if entry_number != 1 else start_time - default_start,
'audio_name': audio_name_template.format(entry_number),
'previous_pause': previous_pause_template.format(entry_number),
}
entries.append(current_entry)
previous_end_time = end_time
entry_number += 1
with open("entries.json", "w") as file:
json.dump(entries, file, indent=4)
return entries
srt_voice_name="af_bella"
use_ffmpeg,local_ffmpeg_path = is_ffmpeg_installed()
# use_ffmpeg=False
def srt_process(srt_file_path,voice_name,custom_voicepack=None,dest_language="en"):
global srt_voice_name,use_ffmpeg
if not srt_file_path.endswith(".srt"):
gr.Error("Please upload a valid .srt file",duration=5)
return None
if use_ffmpeg:
gr.Success("Using FFmpeg for audio speedup to sync with subtitle")
else:
gr.Warning("Install FFmpeg to ensure high-quality audio when speeding up the audio to sync with subtitle. Default Using 'librosa' for speedup",duration= 20)
if custom_voicepack:
if manage_files(custom_voicepack):
srt_voice_name = custom_voicepack
else:
srt_voice_name=voice_name
gr.Warning("Upload small size .pt file only. Using the Current voice pack instead.")
else:
srt_voice_name=voice_name
srt_dubbing = SRTDubbing()
dub_save_path=get_subtitle_Dub_path(srt_file_path,dest_language)
srt_dubbing.srt_to_dub(srt_file_path,dub_save_path,dest_language)
return dub_save_path
#
# srt_file_path="./long.srt"
# dub_audio_path=srt_process(srt_file_path)
# print(f"Audio file saved at: {dub_audio_path}")
with gr.Blocks() as demo3:
gr.Markdown(
"""
# Generate Audio File From Subtitle [Upload Only .srt file]
To generate subtitles, you can use the [Whisper Turbo Subtitle](https://github.com/NeuralFalconYT/Whisper-Turbo-Subtitle)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NeuralFalconYT/Whisper-Turbo-Subtitle/blob/main/Whisper_Turbo_Subtitle.ipynb)
"""
)
with gr.Row():
with gr.Column():
srt_file = gr.File(label='Upload .srt Subtitle File Only')
with gr.Row():
voice = gr.Dropdown(
voice_list,
value='af_bella',
allow_custom_value=False,
label='Voice',
)
with gr.Row():
generate_btn_ = gr.Button('Generate', variant='primary')
with gr.Accordion('Audio Settings', open=False):
custom_voicepack = gr.File(label='Upload Custom VoicePack .pt file')
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
# srt_file.submit(
# srt_process,
# inputs=[srt_file, voice],
# outputs=[audio]
# )
generate_btn_.click(
srt_process,
inputs=[srt_file,voice,custom_voicepack],
outputs=[audio]
)
#### Voice mixing
# modified from here
# https://huggingface.co./spaces/ysharma/Make_Custom_Voices_With_KokoroTTS
def get_voices():
voices = {}
for i in os.listdir("./KOKORO/voices"):
if i.endswith(".pt"):
voice_name = i.replace(".pt", "")
voices[voice_name] = torch.load(f"./KOKORO/voices/{i}", weights_only=True).to(device)
slider_configs = {}
# Iterate through the predefined list of voices
for i in voices:
# Handle the default case for "af"
if i == "af":
slider_configs["af"]= "Default 👩🇺🇸"
continue
if i == "af_nicole":
slider_configs["af_nicole"]="Nicole 😏🇺🇸"
continue
if i == "af_bella":
slider_configs["af_bella"]="Bella 🤗🇺🇸"
continue
# Determine the country emoji
country = "🇺🇸" if i.startswith("a") else "🇬🇧"
# Determine the gender emoji and name
if "f_" in i:
display_name = f"{i.split('_')[-1].capitalize()} 👩{country}"
elif "m_" in i:
display_name = f"{i.split('_')[-1].capitalize()} 👨{country}"
else:
display_name = f"{i.capitalize()} 😐"
# Append the voice tuple to the list
slider_configs[i]= display_name
return voices, slider_configs
voices, slider_configs = get_voices()
def parse_voice_formula(formula):
global voices
"""Parse the voice formula string and return the combined voice tensor."""
if not formula.strip():
raise ValueError("Empty voice formula")
# Initialize the weighted sum
weighted_sum = None
# Split the formula into terms
terms = formula.split('+')
weights=0
for term in terms:
# Parse each term (format: "voice_name * 0.333")
parts = term.strip().split('*')
if len(parts) != 2:
raise ValueError(f"Invalid term format: {term.strip()}. Should be 'voice_name * weight'")
voice_name = parts[0].strip()
weight = float(parts[1].strip())
weights+=weight
# print(voice_name)
# print(weight)
# Get the voice tensor
if voice_name not in voices:
raise ValueError(f"Unknown voice: {voice_name}")
voice_tensor = voices[voice_name]
# Add to weighted sum
if weighted_sum is None:
weighted_sum = weight * voice_tensor
else:
weighted_sum += weight * voice_tensor
return weighted_sum/weights
def get_new_voice(formula):
# print(formula)
try:
# Parse the formula and get the combined voice tensor
weighted_voices = parse_voice_formula(formula)
voice_pack_name = "./weighted_normalised_voices.pt"
# Save and load the combined voice
torch.save(weighted_voices, voice_pack_name)
# print(f"Voice pack saved at: {voice_pack_name}")
return voice_pack_name
except Exception as e:
raise gr.Error(f"Failed to create voice: {str(e)}")
def generate_voice_formula(*values):
"""
Generate a formatted string showing the normalized voice combination.
Returns: String like "0.6 * voice1" or "0.4 * voice1 + 0.6 * voice2"
"""
n = len(values) // 2
checkbox_values = values[:n]
slider_values = list(values[n:])
global slider_configs
# Get active sliders and their names
active_pairs = [(slider_values[i], slider_configs[i][0])
for i in range(len(slider_configs))
if checkbox_values[i]]
if not active_pairs:
return ""
# If only one voice is selected, use its actual value
if len(active_pairs) == 1:
value, name = active_pairs[0]
return f"{value:.3f} * {name}"
# Calculate sum for normalization of multiple voices
total_sum = sum(value for value, _ in active_pairs)
if total_sum == 0:
return ""
# Generate normalized formula for multiple voices
terms = []
for value, name in active_pairs:
normalized_value = value / total_sum
terms.append(f"{normalized_value:.3f} * {name}")
return " + ".join(terms)
def create_voice_mix_ui():
with gr.Blocks() as demo:
gr.Markdown(
"""
# Kokoro Voice Mixer
Select voices and adjust their weights to create a mixed voice.
"""
)
voice_components = {}
voice_names = list(voices.keys())
female_voices = [name for name in voice_names if "f_" in name]
male_voices = [name for name in voice_names if "b_" in name]
neutral_voices = [name for name in voice_names if "f_" not in name and "b_" not in name]
# Define how many columns you want
num_columns = 3
# Function to generate UI
def generate_ui_row(voice_list):
num_voices = len(voice_list)
num_rows = (num_voices + num_columns - 1) // num_columns
for i in range(num_rows):
with gr.Row():
for j in range(num_columns):
index = i * num_columns + j
if index < num_voices:
voice_name = voice_list[index]
with gr.Column():
checkbox = gr.Checkbox(label=slider_configs[voice_name])
weight_slider = gr.Slider(
minimum=0,
maximum=1,
value=1.0,
step=0.01,
interactive=False
)
voice_components[voice_name] = (checkbox, weight_slider)
checkbox.change(
lambda x, slider=weight_slider: gr.update(interactive=x),
inputs=[checkbox],
outputs=[weight_slider]
)
generate_ui_row(female_voices)
generate_ui_row(male_voices)
generate_ui_row(neutral_voices)
formula_inputs = []
for i in voice_components:
checkbox, slider = voice_components[i]
formula_inputs.append(checkbox)
formula_inputs.append(slider)
with gr.Row():
voice_formula = gr.Textbox(label="Voice Formula", interactive=False)
# Function to dynamically update the voice formula
def update_voice_formula(*args):
formula_parts = []
for i, (checkbox, slider) in enumerate(voice_components.values()):
if args[i * 2]: # If checkbox is selected
formula_parts.append(f"{list(voice_components.keys())[i]} * {args[i * 2 + 1]:.3f}")
return " + ".join(formula_parts)
# Update formula whenever any checkbox or slider changes
for checkbox, slider in voice_components.values():
checkbox.change(
update_voice_formula,
inputs=formula_inputs,
outputs=[voice_formula]
)
slider.change(
update_voice_formula,
inputs=formula_inputs,
outputs=[voice_formula]
)
with gr.Row():
voice_text = gr.Textbox(
label='Enter Text',
lines=3,
placeholder="Type your text here to preview the custom voice..."
)
voice_generator = gr.Button('Generate', variant='primary')
with gr.Accordion('Audio Settings', open=False):
model_name=gr.Dropdown(model_list,label="Model",value=model_list[0])
speed = gr.Slider(
minimum=0.25, maximum=2, value=1, step=0.1,
label='⚡️Speed', info='Adjust the speaking speed'
)
remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
with gr.Row():
voice_audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Row():
mix_voice_download = gr.File(label="Download VoicePack")
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[voice_audio])
def generate_custom_audio(text_input, formula_text, model_name, speed, remove_silence):
try:
new_voice_pack = get_new_voice(formula_text)
audio_output_path =text_to_speech(text=text_input, model_name=model_name, voice_name="af", speed=speed, pad_between_segments=0, remove_silence=remove_silence, minimum_silence=0.05,custom_voicepack=new_voice_pack,trim=0.0)
# audio_output_path = text_to_speech(text=text_input, model_name=model_name,voice_name="af", speed=1.0, custom_voicepack=new_voice_pack)
return audio_output_path,new_voice_pack
except Exception as e:
raise gr.Error(f"Failed to generate audio: {e}")
voice_generator.click(
generate_custom_audio,
inputs=[voice_text, voice_formula,model_name,speed,remove_silence],
outputs=[voice_audio,mix_voice_download]
)
return demo
demo4 = create_voice_mix_ui()
# display_text = " \n".join(voice_list)
# with gr.Blocks() as demo5:
# gr.Markdown(f"# Voice Names \n{display_text}")
#get voice names useful for local api
import os
import json
def get_voice_names():
male_voices, female_voices, other_voices = [], [], []
for filename in os.listdir("./KOKORO/voices"):
if filename.endswith('.pt'):
name = os.path.splitext(filename)[0]
if "m_" in name:
male_voices.append(name)
elif name=="af":
female_voices.append(name)
elif "f_" in name:
female_voices.append(name)
else:
other_voices.append(name)
# Sort the lists by the length of the voice names
male_voices = sorted(male_voices, key=len)
female_voices = sorted(female_voices, key=len)
other_voices = sorted(other_voices, key=len)
return json.dumps({
"male_voices": male_voices,
"female_voices": female_voices,
"other_voices": other_voices
}, indent=4)
with gr.Blocks() as demo5:
gr.Markdown(f"# Voice Names")
gr.Markdown("[Install on Windows/Linux](https://github.com/NeuralFalconYT/Kokoro-82M-WebUI)")
get_voice_button = gr.Button("Get Voice Names")
voice_names = gr.Textbox(label="Voice Names", placeholder="Click 'Get Voice Names' to display the list of available voice names", lines=10)
get_voice_button.click(get_voice_names, outputs=[voice_names])
import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
demo = gr.TabbedInterface([demo1, demo2,demo3,demo4,demo5], ["Batched TTS", "Multiple Speech-Type Generation","SRT Dubbing","Voice Mix","Available Voice Names"],title="Kokoro TTS",theme='JohnSmith9982/small_and_pretty')
demo.queue().launch(debug=debug, share=share)
#Run on local network
# laptop_ip="192.168.0.30"
# port=8080
# demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)
if __name__ == "__main__":
main()
##For client side
# from gradio_client import Client
# import shutil
# import os
# os.makedirs("temp_audio", exist_ok=True)
# from gradio_client import Client
# client = Client("http://127.0.0.1:7860/")
# result = client.predict(
# text="Hello!!",
# model_name="kokoro-v0_19.pth",
# voice_name="af_bella",
# speed=1,
# trim=0,
# pad_between_segments=0,
# remove_silence=False,
# minimum_silence=0.05,
# api_name="/text_to_speech"
# )
# save_at=f"./temp_audio/{os.path.basename(result)}"
# shutil.move(result, save_at)
# print(f"Saved at {save_at}") |