File size: 20,321 Bytes
6d89762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
from KOKORO.models import build_model
from KOKORO.utils import tts,tts_file_name,podcast
import sys
sys.path.append('.')
import torch
import gc 
print("Loading model...")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using device: {device}')
MODEL = build_model('./KOKORO/kokoro-v0_19.pth', device)
print("Model loaded successfully.")

def tts_maker(text,voice_name="af_bella",speed = 0.8,trim=0,pad_between=0,save_path="temp.wav",remove_silence=False,minimum_silence=50):
    # Sanitize the save_path to remove any newline characters
    save_path = save_path.replace('\n', '').replace('\r', '')
    global MODEL
    audio_path=tts(MODEL,device,text,voice_name,speed=speed,trim=trim,pad_between_segments=pad_between,output_file=save_path,remove_silence=remove_silence,minimum_silence=minimum_silence)
    return audio_path


model_list = ["kokoro-v0_19.pth", "kokoro-v0_19-half.pth"]
current_model = model_list[0]

def update_model(model_name):
    """
    Updates the TTS model only if the specified model is not already loaded.
    """
    global MODEL, current_model
    if current_model == model_name:
        return f"Model already set to {model_name}"  # No need to reload
    model_path = f"./KOKORO/{model_name}"  # Default model path
    if model_name == "kokoro-v0_19-half.pth":
        model_path = f"./KOKORO/fp16/{model_name}"  # Update path for specific model
    # print(f"Loading new model: {model_name}")
    del MODEL  # Cleanup existing model
    gc.collect()
    torch.cuda.empty_cache()  # Ensure GPU memory is cleared
    MODEL = build_model(model_path, device)
    current_model = model_name
    return f"Model updated to {model_name}"



def text_to_speech(text, model_name="kokoro-v0_19.pth", voice_name="af", speed=1.0, trim=1.0, pad_between_segments=0, remove_silence=True, minimum_silence=0.20):
    """
    Converts text to speech using the specified parameters and ensures the model is updated only if necessary.
    """
    update_status = update_model(model_name)  # Load the model only if required
    # print(update_status)  # Log model loading status
    if not minimum_silence:
        minimum_silence = 0.05
    keep_silence = int(minimum_silence * 1000)
    save_at = tts_file_name(text)
    audio_path = tts_maker(
        text, 
        voice_name, 
        speed, 
        trim, 
        pad_between_segments, 
        save_at, 
        remove_silence, 
        keep_silence
    )
    return audio_path




import gradio as gr

# voice_list = [
#     'af',  # Default voice is a 50-50 mix of af_bella & af_sarah
#     'af_bella', 'af_sarah', 'am_adam', 'am_michael',
#     'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
# ]



import os

# Get the list of voice names without file extensions
voice_list = [
    os.path.splitext(filename)[0]
    for filename in os.listdir("./KOKORO/voices")
    if filename.endswith('.pt')
]

# Sort the list based on the length of each name
voice_list = sorted(voice_list, key=len)

def toggle_autoplay(autoplay):
    return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)

with gr.Blocks() as demo1:
    gr.Markdown("# Batched TTS")
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(
                label='Enter Text',
                lines=3,
                placeholder="Type your text here..."
            )
            with gr.Row():
                voice = gr.Dropdown(
                    voice_list, 
                    value='af', 
                    allow_custom_value=False, 
                    label='Voice', 
                    info='Starred voices are more stable'
                )
            with gr.Row():
                generate_btn = gr.Button('Generate', variant='primary')
            with gr.Accordion('Audio Settings', open=False):
                model_name=gr.Dropdown(model_list,label="Model",value=model_list[0])
                remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
                minimum_silence = gr.Number(
                    label="Keep Silence Upto (In seconds)", 
                    value=0.05
                )
                speed = gr.Slider(
                    minimum=0.25, maximum=2, value=1, step=0.1, 
                    label='⚡️Speed', info='Adjust the speaking speed'
                )
                trim = gr.Slider(
                    minimum=0, maximum=1, value=0, step=0.1, 
                    label='🔪 Trim', info='How much to cut from both ends of each segment'
                )   
                pad_between = gr.Slider(
                    minimum=0, maximum=2, value=0, step=0.1, 
                    label='🔇 Pad Between', info='Silent Duration between segments [For Large Text]'
                )
                
        with gr.Column():
            audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
            with gr.Accordion('Enable Autoplay', open=False):
                autoplay = gr.Checkbox(value=True, label='Autoplay')
                autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])

    text.submit(
        text_to_speech, 
        inputs=[text, model_name,voice, speed, trim, pad_between, remove_silence, minimum_silence], 
        outputs=[audio]
    )
    generate_btn.click(
        text_to_speech, 
        inputs=[text,model_name, voice, speed, trim, pad_between, remove_silence, minimum_silence], 
        outputs=[audio]
    )

def podcast_maker(text,remove_silence=False,minimum_silence=50,model_name="kokoro-v0_19.pth"):
    global MODEL,device
    update_model(model_name)
    if not minimum_silence:
        minimum_silence = 0.05
    keep_silence = int(minimum_silence * 1000)
    podcast_save_at=podcast(MODEL, device,text,remove_silence=remove_silence, minimum_silence=keep_silence)
    return podcast_save_at
    


dummpy_example="""{af} Hello, I'd like to order a sandwich please.                                                         
{af_sky} What do you mean you're out of bread?                                                                      
{af_bella} I really wanted a sandwich though...                                                              
{af_nicole} You know what, darn you and your little shop!                                                                       
{bm_george} I'll just go back home and cry now.                                                                           
{am_adam} Why me?"""
with gr.Blocks() as demo2:
    gr.Markdown(
        """
    # Multiple Speech-Type Generation
    This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use "af" voice.
    Format:
    {voice_name} your text here
    """
    )
    with gr.Row():
        gr.Markdown(
            """
            **Example Input:**                                                                      
            {af} Hello, I'd like to order a sandwich please.                                                         
            {af_sky} What do you mean you're out of bread?                                                                      
            {af_bella} I really wanted a sandwich though...                                                              
            {af_nicole} You know what, darn you and your little shop!                                                                       
            {bm_george} I'll just go back home and cry now.                                                                           
            {am_adam} Why me?!                                                                         
            """
        )
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(
                label='Enter Text',
                lines=7,
                placeholder=dummpy_example
            )
            with gr.Row():
                generate_btn = gr.Button('Generate', variant='primary')
            with gr.Accordion('Audio Settings', open=False):
                remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
                minimum_silence = gr.Number(
                    label="Keep Silence Upto (In seconds)", 
                    value=0.20
                )
        with gr.Column():
            audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
            with gr.Accordion('Enable Autoplay', open=False):
                autoplay = gr.Checkbox(value=True, label='Autoplay')
                autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])

    text.submit(
        podcast_maker, 
        inputs=[text, remove_silence, minimum_silence], 
        outputs=[audio]
    )
    generate_btn.click(
        podcast_maker, 
        inputs=[text, remove_silence, minimum_silence], 
        outputs=[audio]
    )




import shutil
import os

# Ensure the output directory exists
output_dir = "./temp_audio"
os.makedirs(output_dir, exist_ok=True)









#@title Generate Audio File From Subtitle
# from tqdm.notebook import tqdm
from tqdm import tqdm
import subprocess
import json
import pysrt
import os
from pydub import AudioSegment
import shutil
import uuid
import re
import time

# os.chdir(install_path)

def your_tts(text,audio_path,actual_duration,speed=1.0):
  global srt_voice_name
  model_name="kokoro-v0_19.pth"
  tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speed)
  print(tts_path)
  tts_audio = AudioSegment.from_file(tts_path)
  tts_duration = len(tts_audio)
  if tts_duration > actual_duration:
    speedup_factor = tts_duration / actual_duration
    tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speedup_factor)
  print(tts_path)
  shutil.copy(tts_path,audio_path)



base_path="."
import datetime
def get_current_time():
    # Return current time as a string in the format HH_MM_AM/PM
    return datetime.datetime.now().strftime("%I_%M_%p")

def get_subtitle_Dub_path(srt_file_path,Language="en"):
  file_name = os.path.splitext(os.path.basename(srt_file_path))[0]
  if not os.path.exists(f"{base_path}/TTS_DUB"):
    os.mkdir(f"{base_path}/TTS_DUB")
  random_string = str(uuid.uuid4())[:6]
  new_path=f"{base_path}/TTS_DUB/{file_name}_{Language}_{get_current_time()}_{random_string}.wav"
  return new_path








def clean_srt(input_path):
    file_name = os.path.basename(input_path)
    output_folder = f"{base_path}/save_srt"
    if not os.path.exists(output_folder):
        os.mkdir(output_folder)
    output_path = f"{output_folder}/{file_name}"

    def clean_srt_line(text):
        bad_list = ["[", "]", "♫", "\n"]
        for i in bad_list:
            text = text.replace(i, "")
        return text.strip()

    # Load the subtitle file
    subs = pysrt.open(input_path)

    # Iterate through each subtitle and print its details
    with open(output_path, "w", encoding='utf-8') as file:
        for sub in subs:
            file.write(f"{sub.index}\n")
            file.write(f"{sub.start} --> {sub.end}\n")
            file.write(f"{clean_srt_line(sub.text)}\n")
            file.write("\n")
        file.close()
    # print(f"Clean SRT saved at: {output_path}")
    return output_path
# Example usage






class SRTDubbing:
    def __init__(self):
        pass

    @staticmethod
    def text_to_speech_srt(text, audio_path, language, actual_duration):
        tts_filename = "./cache/temp.wav"
        your_tts(text,tts_filename,actual_duration,speed=1.0)
        # Check the duration of the generated TTS audio
        tts_audio = AudioSegment.from_file(tts_filename)
        tts_duration = len(tts_audio)

        if actual_duration == 0:
            # If actual duration is zero, use the original TTS audio without modifications
            shutil.move(tts_filename, audio_path)
            return
        # If TTS audio duration is longer than actual duration, speed up the audio
        if tts_duration > actual_duration:
            speedup_factor = tts_duration / actual_duration
            speedup_filename = "./cache/speedup_temp.wav"
            # Use ffmpeg to change audio speed
            subprocess.run([
                "ffmpeg",
                "-i", tts_filename,
                "-filter:a", f"atempo={speedup_factor}",
                speedup_filename,
                "-y"
            ], check=True)

            # Replace the original TTS audio with the sped-up version
            shutil.move(speedup_filename, audio_path)
        elif tts_duration < actual_duration:
            # If TTS audio duration is less than actual duration, add silence to match the duration
            silence_gap = actual_duration - tts_duration
            silence = AudioSegment.silent(duration=int(silence_gap))
            new_audio = tts_audio + silence

            # Save the new audio with added silence
            new_audio.export(audio_path, format="wav")
        else:
            # If TTS audio duration is equal to actual duration, use the original TTS audio
            shutil.move(tts_filename, audio_path)

    @staticmethod
    def make_silence(pause_time, pause_save_path):
        silence = AudioSegment.silent(duration=pause_time)
        silence.export(pause_save_path, format="wav")
        return pause_save_path

    @staticmethod
    def create_folder_for_srt(srt_file_path):
        srt_base_name = os.path.splitext(os.path.basename(srt_file_path))[0]
        random_uuid = str(uuid.uuid4())[:4]
        dummy_folder_path = f"{base_path}/dummy"
        if not os.path.exists(dummy_folder_path):
            os.makedirs(dummy_folder_path)
        folder_path = os.path.join(dummy_folder_path, f"{srt_base_name}_{random_uuid}")
        os.makedirs(folder_path, exist_ok=True)
        return folder_path

    @staticmethod
    def concatenate_audio_files(audio_paths, output_path):
        concatenated_audio = AudioSegment.silent(duration=0)
        for audio_path in audio_paths:
            audio_segment = AudioSegment.from_file(audio_path)
            concatenated_audio += audio_segment
        concatenated_audio.export(output_path, format="wav")

    def srt_to_dub(self, srt_file_path,dub_save_path,language='en'):
        result = self.read_srt_file(srt_file_path)
        new_folder_path = self.create_folder_for_srt(srt_file_path)
        join_path = []
        for i in tqdm(result):
        # for i in result:
            text = i['text']
            actual_duration = i['end_time'] - i['start_time']
            pause_time = i['pause_time']
            slient_path = f"{new_folder_path}/{i['previous_pause']}"
            self.make_silence(pause_time, slient_path)
            join_path.append(slient_path)
            tts_path = f"{new_folder_path}/{i['audio_name']}"
            self.text_to_speech_srt(text, tts_path, language, actual_duration)
            join_path.append(tts_path)
        self.concatenate_audio_files(join_path, dub_save_path)

    @staticmethod
    def convert_to_millisecond(time_str):
      if isinstance(time_str, str):
          hours, minutes, second_millisecond = time_str.split(':')
          seconds, milliseconds = second_millisecond.split(",")

          total_milliseconds = (
              int(hours) * 3600000 +
              int(minutes) * 60000 +
              int(seconds) * 1000 +
              int(milliseconds)
          )

          return total_milliseconds
    @staticmethod
    def read_srt_file(file_path):
        entries = []
        default_start = 0
        previous_end_time = default_start
        entry_number = 1
        audio_name_template = "{}.wav"
        previous_pause_template = "{}_before_pause.wav"

        with open(file_path, 'r', encoding='utf-8') as file:
            lines = file.readlines()
            # print(lines)
            for i in range(0, len(lines), 4):
                time_info = re.findall(r'(\d+:\d+:\d+,\d+) --> (\d+:\d+:\d+,\d+)', lines[i + 1])
                start_time = SRTDubbing.convert_to_millisecond(time_info[0][0])
                end_time = SRTDubbing.convert_to_millisecond(time_info[0][1])

                current_entry = {
                    'entry_number': entry_number,
                    'start_time': start_time,
                    'end_time': end_time,
                    'text': lines[i + 2].strip(),
                    'pause_time': start_time - previous_end_time if entry_number != 1 else start_time - default_start,
                    'audio_name': audio_name_template.format(entry_number),
                    'previous_pause': previous_pause_template.format(entry_number),
                }

                entries.append(current_entry)
                previous_end_time = end_time
                entry_number += 1

        with open("entries.json", "w") as file:
            json.dump(entries, file, indent=4)
        return entries
srt_voice_name="am_adam"   
def srt_process(srt_file_path,voice_name,dest_language="en"):
  global srt_voice_name
  srt_voice_name=voice_name
  srt_dubbing = SRTDubbing()
  dub_save_path=get_subtitle_Dub_path(srt_file_path,dest_language)
  srt_dubbing.srt_to_dub(srt_file_path,dub_save_path,dest_language)
  return dub_save_path

# 
# srt_file_path="./long.srt"
# dub_audio_path=srt_process(srt_file_path)
# print(f"Audio file saved at: {dub_audio_path}")



with gr.Blocks() as demo3:

    gr.Markdown(
        """
        # Generate Audio File From Subtitle [Single Speaker Only]
        
        To generate subtitles, you can use the [Whisper Turbo Subtitle](https://github.com/NeuralFalconYT/Whisper-Turbo-Subtitle) 
        
        [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NeuralFalconYT/Whisper-Turbo-Subtitle/blob/main/Whisper_Turbo_Subtitle.ipynb)
        """
    )
    with gr.Row():
        with gr.Column():
            srt_file = gr.File(label='Upload .srt Subtitle File Only')
            with gr.Row():
                voice = gr.Dropdown(
                    voice_list, 
                    value='af', 
                    allow_custom_value=False, 
                    label='Voice', 
                )
            with gr.Row():
                generate_btn_ = gr.Button('Generate', variant='primary')
          
        with gr.Column():
            audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
            with gr.Accordion('Enable Autoplay', open=False):
                autoplay = gr.Checkbox(value=True, label='Autoplay')
                autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])

    # srt_file.submit(
    #     srt_process, 
    #     inputs=[srt_file, voice], 
    #     outputs=[audio]
    # )
    generate_btn_.click(
        srt_process, 
        inputs=[srt_file,voice], 
        outputs=[audio]
    )
    
    
display_text = "  \n".join(voice_list)

with gr.Blocks() as demo4:
    gr.Markdown(f"# Voice Names \n{display_text}")


import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
    demo = gr.TabbedInterface([demo1, demo2,demo3,demo4], ["Batched TTS", "Multiple Speech-Type Generation","SRT Dubbing","Available Voice Names"],title="Kokoro TTS")

    demo.queue().launch(debug=debug, share=share)
    #Run on local network
    # laptop_ip="192.168.0.30"
    # port=8080
    # demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)

if __name__ == "__main__":
    main()    


##For client side
# from gradio_client import Client
# import shutil
# import os
# os.makedirs("temp_audio", exist_ok=True)
# from gradio_client import Client
# client = Client("http://127.0.0.1:7860/")
# result = client.predict(
# 		text="Hello!!",
# 		model_name="kokoro-v0_19.pth",
# 		voice_name="af_bella",
# 		speed=1,
# 		trim=0,
# 		pad_between_segments=0,
# 		remove_silence=False,
# 		minimum_silence=0.05,
# 		api_name="/text_to_speech"
# )

# save_at=f"./temp_audio/{os.path.basename(result)}"
# shutil.move(result, save_at)
# print(f"Saved at {save_at}")