Spaces:
Running
Running
File size: 20,321 Bytes
6d89762 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 |
from KOKORO.models import build_model
from KOKORO.utils import tts,tts_file_name,podcast
import sys
sys.path.append('.')
import torch
import gc
print("Loading model...")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using device: {device}')
MODEL = build_model('./KOKORO/kokoro-v0_19.pth', device)
print("Model loaded successfully.")
def tts_maker(text,voice_name="af_bella",speed = 0.8,trim=0,pad_between=0,save_path="temp.wav",remove_silence=False,minimum_silence=50):
# Sanitize the save_path to remove any newline characters
save_path = save_path.replace('\n', '').replace('\r', '')
global MODEL
audio_path=tts(MODEL,device,text,voice_name,speed=speed,trim=trim,pad_between_segments=pad_between,output_file=save_path,remove_silence=remove_silence,minimum_silence=minimum_silence)
return audio_path
model_list = ["kokoro-v0_19.pth", "kokoro-v0_19-half.pth"]
current_model = model_list[0]
def update_model(model_name):
"""
Updates the TTS model only if the specified model is not already loaded.
"""
global MODEL, current_model
if current_model == model_name:
return f"Model already set to {model_name}" # No need to reload
model_path = f"./KOKORO/{model_name}" # Default model path
if model_name == "kokoro-v0_19-half.pth":
model_path = f"./KOKORO/fp16/{model_name}" # Update path for specific model
# print(f"Loading new model: {model_name}")
del MODEL # Cleanup existing model
gc.collect()
torch.cuda.empty_cache() # Ensure GPU memory is cleared
MODEL = build_model(model_path, device)
current_model = model_name
return f"Model updated to {model_name}"
def text_to_speech(text, model_name="kokoro-v0_19.pth", voice_name="af", speed=1.0, trim=1.0, pad_between_segments=0, remove_silence=True, minimum_silence=0.20):
"""
Converts text to speech using the specified parameters and ensures the model is updated only if necessary.
"""
update_status = update_model(model_name) # Load the model only if required
# print(update_status) # Log model loading status
if not minimum_silence:
minimum_silence = 0.05
keep_silence = int(minimum_silence * 1000)
save_at = tts_file_name(text)
audio_path = tts_maker(
text,
voice_name,
speed,
trim,
pad_between_segments,
save_at,
remove_silence,
keep_silence
)
return audio_path
import gradio as gr
# voice_list = [
# 'af', # Default voice is a 50-50 mix of af_bella & af_sarah
# 'af_bella', 'af_sarah', 'am_adam', 'am_michael',
# 'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
# ]
import os
# Get the list of voice names without file extensions
voice_list = [
os.path.splitext(filename)[0]
for filename in os.listdir("./KOKORO/voices")
if filename.endswith('.pt')
]
# Sort the list based on the length of each name
voice_list = sorted(voice_list, key=len)
def toggle_autoplay(autoplay):
return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)
with gr.Blocks() as demo1:
gr.Markdown("# Batched TTS")
with gr.Row():
with gr.Column():
text = gr.Textbox(
label='Enter Text',
lines=3,
placeholder="Type your text here..."
)
with gr.Row():
voice = gr.Dropdown(
voice_list,
value='af',
allow_custom_value=False,
label='Voice',
info='Starred voices are more stable'
)
with gr.Row():
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Audio Settings', open=False):
model_name=gr.Dropdown(model_list,label="Model",value=model_list[0])
remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
minimum_silence = gr.Number(
label="Keep Silence Upto (In seconds)",
value=0.05
)
speed = gr.Slider(
minimum=0.25, maximum=2, value=1, step=0.1,
label='⚡️Speed', info='Adjust the speaking speed'
)
trim = gr.Slider(
minimum=0, maximum=1, value=0, step=0.1,
label='🔪 Trim', info='How much to cut from both ends of each segment'
)
pad_between = gr.Slider(
minimum=0, maximum=2, value=0, step=0.1,
label='🔇 Pad Between', info='Silent Duration between segments [For Large Text]'
)
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
text.submit(
text_to_speech,
inputs=[text, model_name,voice, speed, trim, pad_between, remove_silence, minimum_silence],
outputs=[audio]
)
generate_btn.click(
text_to_speech,
inputs=[text,model_name, voice, speed, trim, pad_between, remove_silence, minimum_silence],
outputs=[audio]
)
def podcast_maker(text,remove_silence=False,minimum_silence=50,model_name="kokoro-v0_19.pth"):
global MODEL,device
update_model(model_name)
if not minimum_silence:
minimum_silence = 0.05
keep_silence = int(minimum_silence * 1000)
podcast_save_at=podcast(MODEL, device,text,remove_silence=remove_silence, minimum_silence=keep_silence)
return podcast_save_at
dummpy_example="""{af} Hello, I'd like to order a sandwich please.
{af_sky} What do you mean you're out of bread?
{af_bella} I really wanted a sandwich though...
{af_nicole} You know what, darn you and your little shop!
{bm_george} I'll just go back home and cry now.
{am_adam} Why me?"""
with gr.Blocks() as demo2:
gr.Markdown(
"""
# Multiple Speech-Type Generation
This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use "af" voice.
Format:
{voice_name} your text here
"""
)
with gr.Row():
gr.Markdown(
"""
**Example Input:**
{af} Hello, I'd like to order a sandwich please.
{af_sky} What do you mean you're out of bread?
{af_bella} I really wanted a sandwich though...
{af_nicole} You know what, darn you and your little shop!
{bm_george} I'll just go back home and cry now.
{am_adam} Why me?!
"""
)
with gr.Row():
with gr.Column():
text = gr.Textbox(
label='Enter Text',
lines=7,
placeholder=dummpy_example
)
with gr.Row():
generate_btn = gr.Button('Generate', variant='primary')
with gr.Accordion('Audio Settings', open=False):
remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
minimum_silence = gr.Number(
label="Keep Silence Upto (In seconds)",
value=0.20
)
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
text.submit(
podcast_maker,
inputs=[text, remove_silence, minimum_silence],
outputs=[audio]
)
generate_btn.click(
podcast_maker,
inputs=[text, remove_silence, minimum_silence],
outputs=[audio]
)
import shutil
import os
# Ensure the output directory exists
output_dir = "./temp_audio"
os.makedirs(output_dir, exist_ok=True)
#@title Generate Audio File From Subtitle
# from tqdm.notebook import tqdm
from tqdm import tqdm
import subprocess
import json
import pysrt
import os
from pydub import AudioSegment
import shutil
import uuid
import re
import time
# os.chdir(install_path)
def your_tts(text,audio_path,actual_duration,speed=1.0):
global srt_voice_name
model_name="kokoro-v0_19.pth"
tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speed)
print(tts_path)
tts_audio = AudioSegment.from_file(tts_path)
tts_duration = len(tts_audio)
if tts_duration > actual_duration:
speedup_factor = tts_duration / actual_duration
tts_path=text_to_speech(text, model_name, voice_name=srt_voice_name,speed=speedup_factor)
print(tts_path)
shutil.copy(tts_path,audio_path)
base_path="."
import datetime
def get_current_time():
# Return current time as a string in the format HH_MM_AM/PM
return datetime.datetime.now().strftime("%I_%M_%p")
def get_subtitle_Dub_path(srt_file_path,Language="en"):
file_name = os.path.splitext(os.path.basename(srt_file_path))[0]
if not os.path.exists(f"{base_path}/TTS_DUB"):
os.mkdir(f"{base_path}/TTS_DUB")
random_string = str(uuid.uuid4())[:6]
new_path=f"{base_path}/TTS_DUB/{file_name}_{Language}_{get_current_time()}_{random_string}.wav"
return new_path
def clean_srt(input_path):
file_name = os.path.basename(input_path)
output_folder = f"{base_path}/save_srt"
if not os.path.exists(output_folder):
os.mkdir(output_folder)
output_path = f"{output_folder}/{file_name}"
def clean_srt_line(text):
bad_list = ["[", "]", "♫", "\n"]
for i in bad_list:
text = text.replace(i, "")
return text.strip()
# Load the subtitle file
subs = pysrt.open(input_path)
# Iterate through each subtitle and print its details
with open(output_path, "w", encoding='utf-8') as file:
for sub in subs:
file.write(f"{sub.index}\n")
file.write(f"{sub.start} --> {sub.end}\n")
file.write(f"{clean_srt_line(sub.text)}\n")
file.write("\n")
file.close()
# print(f"Clean SRT saved at: {output_path}")
return output_path
# Example usage
class SRTDubbing:
def __init__(self):
pass
@staticmethod
def text_to_speech_srt(text, audio_path, language, actual_duration):
tts_filename = "./cache/temp.wav"
your_tts(text,tts_filename,actual_duration,speed=1.0)
# Check the duration of the generated TTS audio
tts_audio = AudioSegment.from_file(tts_filename)
tts_duration = len(tts_audio)
if actual_duration == 0:
# If actual duration is zero, use the original TTS audio without modifications
shutil.move(tts_filename, audio_path)
return
# If TTS audio duration is longer than actual duration, speed up the audio
if tts_duration > actual_duration:
speedup_factor = tts_duration / actual_duration
speedup_filename = "./cache/speedup_temp.wav"
# Use ffmpeg to change audio speed
subprocess.run([
"ffmpeg",
"-i", tts_filename,
"-filter:a", f"atempo={speedup_factor}",
speedup_filename,
"-y"
], check=True)
# Replace the original TTS audio with the sped-up version
shutil.move(speedup_filename, audio_path)
elif tts_duration < actual_duration:
# If TTS audio duration is less than actual duration, add silence to match the duration
silence_gap = actual_duration - tts_duration
silence = AudioSegment.silent(duration=int(silence_gap))
new_audio = tts_audio + silence
# Save the new audio with added silence
new_audio.export(audio_path, format="wav")
else:
# If TTS audio duration is equal to actual duration, use the original TTS audio
shutil.move(tts_filename, audio_path)
@staticmethod
def make_silence(pause_time, pause_save_path):
silence = AudioSegment.silent(duration=pause_time)
silence.export(pause_save_path, format="wav")
return pause_save_path
@staticmethod
def create_folder_for_srt(srt_file_path):
srt_base_name = os.path.splitext(os.path.basename(srt_file_path))[0]
random_uuid = str(uuid.uuid4())[:4]
dummy_folder_path = f"{base_path}/dummy"
if not os.path.exists(dummy_folder_path):
os.makedirs(dummy_folder_path)
folder_path = os.path.join(dummy_folder_path, f"{srt_base_name}_{random_uuid}")
os.makedirs(folder_path, exist_ok=True)
return folder_path
@staticmethod
def concatenate_audio_files(audio_paths, output_path):
concatenated_audio = AudioSegment.silent(duration=0)
for audio_path in audio_paths:
audio_segment = AudioSegment.from_file(audio_path)
concatenated_audio += audio_segment
concatenated_audio.export(output_path, format="wav")
def srt_to_dub(self, srt_file_path,dub_save_path,language='en'):
result = self.read_srt_file(srt_file_path)
new_folder_path = self.create_folder_for_srt(srt_file_path)
join_path = []
for i in tqdm(result):
# for i in result:
text = i['text']
actual_duration = i['end_time'] - i['start_time']
pause_time = i['pause_time']
slient_path = f"{new_folder_path}/{i['previous_pause']}"
self.make_silence(pause_time, slient_path)
join_path.append(slient_path)
tts_path = f"{new_folder_path}/{i['audio_name']}"
self.text_to_speech_srt(text, tts_path, language, actual_duration)
join_path.append(tts_path)
self.concatenate_audio_files(join_path, dub_save_path)
@staticmethod
def convert_to_millisecond(time_str):
if isinstance(time_str, str):
hours, minutes, second_millisecond = time_str.split(':')
seconds, milliseconds = second_millisecond.split(",")
total_milliseconds = (
int(hours) * 3600000 +
int(minutes) * 60000 +
int(seconds) * 1000 +
int(milliseconds)
)
return total_milliseconds
@staticmethod
def read_srt_file(file_path):
entries = []
default_start = 0
previous_end_time = default_start
entry_number = 1
audio_name_template = "{}.wav"
previous_pause_template = "{}_before_pause.wav"
with open(file_path, 'r', encoding='utf-8') as file:
lines = file.readlines()
# print(lines)
for i in range(0, len(lines), 4):
time_info = re.findall(r'(\d+:\d+:\d+,\d+) --> (\d+:\d+:\d+,\d+)', lines[i + 1])
start_time = SRTDubbing.convert_to_millisecond(time_info[0][0])
end_time = SRTDubbing.convert_to_millisecond(time_info[0][1])
current_entry = {
'entry_number': entry_number,
'start_time': start_time,
'end_time': end_time,
'text': lines[i + 2].strip(),
'pause_time': start_time - previous_end_time if entry_number != 1 else start_time - default_start,
'audio_name': audio_name_template.format(entry_number),
'previous_pause': previous_pause_template.format(entry_number),
}
entries.append(current_entry)
previous_end_time = end_time
entry_number += 1
with open("entries.json", "w") as file:
json.dump(entries, file, indent=4)
return entries
srt_voice_name="am_adam"
def srt_process(srt_file_path,voice_name,dest_language="en"):
global srt_voice_name
srt_voice_name=voice_name
srt_dubbing = SRTDubbing()
dub_save_path=get_subtitle_Dub_path(srt_file_path,dest_language)
srt_dubbing.srt_to_dub(srt_file_path,dub_save_path,dest_language)
return dub_save_path
#
# srt_file_path="./long.srt"
# dub_audio_path=srt_process(srt_file_path)
# print(f"Audio file saved at: {dub_audio_path}")
with gr.Blocks() as demo3:
gr.Markdown(
"""
# Generate Audio File From Subtitle [Single Speaker Only]
To generate subtitles, you can use the [Whisper Turbo Subtitle](https://github.com/NeuralFalconYT/Whisper-Turbo-Subtitle)
[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/NeuralFalconYT/Whisper-Turbo-Subtitle/blob/main/Whisper_Turbo_Subtitle.ipynb)
"""
)
with gr.Row():
with gr.Column():
srt_file = gr.File(label='Upload .srt Subtitle File Only')
with gr.Row():
voice = gr.Dropdown(
voice_list,
value='af',
allow_custom_value=False,
label='Voice',
)
with gr.Row():
generate_btn_ = gr.Button('Generate', variant='primary')
with gr.Column():
audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
with gr.Accordion('Enable Autoplay', open=False):
autoplay = gr.Checkbox(value=True, label='Autoplay')
autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])
# srt_file.submit(
# srt_process,
# inputs=[srt_file, voice],
# outputs=[audio]
# )
generate_btn_.click(
srt_process,
inputs=[srt_file,voice],
outputs=[audio]
)
display_text = " \n".join(voice_list)
with gr.Blocks() as demo4:
gr.Markdown(f"# Voice Names \n{display_text}")
import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
demo = gr.TabbedInterface([demo1, demo2,demo3,demo4], ["Batched TTS", "Multiple Speech-Type Generation","SRT Dubbing","Available Voice Names"],title="Kokoro TTS")
demo.queue().launch(debug=debug, share=share)
#Run on local network
# laptop_ip="192.168.0.30"
# port=8080
# demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)
if __name__ == "__main__":
main()
##For client side
# from gradio_client import Client
# import shutil
# import os
# os.makedirs("temp_audio", exist_ok=True)
# from gradio_client import Client
# client = Client("http://127.0.0.1:7860/")
# result = client.predict(
# text="Hello!!",
# model_name="kokoro-v0_19.pth",
# voice_name="af_bella",
# speed=1,
# trim=0,
# pad_between_segments=0,
# remove_silence=False,
# minimum_silence=0.05,
# api_name="/text_to_speech"
# )
# save_at=f"./temp_audio/{os.path.basename(result)}"
# shutil.move(result, save_at)
# print(f"Saved at {save_at}")
|