File size: 10,296 Bytes
6d89762
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from KOKORO.models import build_model
from KOKORO.utils import tts,tts_file_name,podcast
import sys
sys.path.append('.')
import torch
import gc 
print("Loading model...")
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f'Using device: {device}')
MODEL = build_model('./KOKORO/kokoro-v0_19.pth', device)
print("Model loaded successfully.")

def tts_maker(text,voice_name="af_bella",speed = 0.8,trim=0,pad_between=0,save_path="temp.wav",remove_silence=False,minimum_silence=50):
    # Sanitize the save_path to remove any newline characters
    save_path = save_path.replace('\n', '').replace('\r', '')
    global MODEL
    audio_path=tts(MODEL,device,text,voice_name,speed=speed,trim=trim,pad_between_segments=pad_between,output_file=save_path,remove_silence=remove_silence,minimum_silence=minimum_silence)
    return audio_path


model_list = ["kokoro-v0_19.pth", "kokoro-v0_19-half.pth"]
current_model = model_list[0]

def update_model(model_name):
    """
    Updates the TTS model only if the specified model is not already loaded.
    """
    global MODEL, current_model
    if current_model == model_name:
        return f"Model already set to {model_name}"  # No need to reload
    model_path = f"./KOKORO/{model_name}"  # Default model path
    if model_name == "kokoro-v0_19-half.pth":
        model_path = f"./KOKORO/fp16/{model_name}"  # Update path for specific model
    # print(f"Loading new model: {model_name}")
    del MODEL  # Cleanup existing model
    gc.collect()
    torch.cuda.empty_cache()  # Ensure GPU memory is cleared
    MODEL = build_model(model_path, device)
    current_model = model_name
    return f"Model updated to {model_name}"


def text_to_speech(text, model_name, voice_name, speed, trim, pad_between_segments, remove_silence, minimum_silence):
    """
    Converts text to speech using the specified parameters and ensures the model is updated only if necessary.
    """
    update_status = update_model(model_name)  # Load the model only if required
    # print(update_status)  # Log model loading status
    if not minimum_silence:
        minimum_silence = 0.05
    keep_silence = int(minimum_silence * 1000)
    save_at = tts_file_name(text)
    audio_path = tts_maker(
        text, 
        voice_name, 
        speed, 
        trim, 
        pad_between_segments, 
        save_at, 
        remove_silence, 
        keep_silence
    )
    return audio_path




import gradio as gr

# voice_list = [
#     'af',  # Default voice is a 50-50 mix of af_bella & af_sarah
#     'af_bella', 'af_sarah', 'am_adam', 'am_michael',
#     'bf_emma', 'bf_isabella', 'bm_george', 'bm_lewis',
# ]



import os

# Get the list of voice names without file extensions
voice_list = [
    os.path.splitext(filename)[0]
    for filename in os.listdir("./KOKORO/voices")
    if filename.endswith('.pt')
]

# Sort the list based on the length of each name
voice_list = sorted(voice_list, key=len)

def toggle_autoplay(autoplay):
    return gr.Audio(interactive=False, label='Output Audio', autoplay=autoplay)

with gr.Blocks() as demo1:
    gr.Markdown("# Batched TTS")
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(
                label='Enter Text',
                lines=3,
                placeholder="Type your text here..."
            )
            with gr.Row():
                voice = gr.Dropdown(
                    voice_list, 
                    value='af', 
                    allow_custom_value=False, 
                    label='Voice', 
                    info='Starred voices are more stable'
                )
            with gr.Row():
                generate_btn = gr.Button('Generate', variant='primary')
            with gr.Accordion('Audio Settings', open=False):
                model_name=gr.Dropdown(model_list,label="Model",value=model_list[0])
                remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
                minimum_silence = gr.Number(
                    label="Keep Silence Upto (In seconds)", 
                    value=0.05
                )
                speed = gr.Slider(
                    minimum=0.25, maximum=2, value=1, step=0.1, 
                    label='⚡️Speed', info='Adjust the speaking speed'
                )
                trim = gr.Slider(
                    minimum=0, maximum=1, value=0, step=0.1, 
                    label='🔪 Trim', info='How much to cut from both ends of each segment'
                )   
                pad_between = gr.Slider(
                    minimum=0, maximum=2, value=0, step=0.1, 
                    label='🔇 Pad Between', info='Silent Duration between segments [For Large Text]'
                )
                
        with gr.Column():
            audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
            with gr.Accordion('Enable Autoplay', open=False):
                autoplay = gr.Checkbox(value=True, label='Autoplay')
                autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])

    text.submit(
        text_to_speech, 
        inputs=[text, model_name,voice, speed, trim, pad_between, remove_silence, minimum_silence], 
        outputs=[audio]
    )
    generate_btn.click(
        text_to_speech, 
        inputs=[text,model_name, voice, speed, trim, pad_between, remove_silence, minimum_silence], 
        outputs=[audio]
    )

def podcast_maker(text,remove_silence=False,minimum_silence=50,model_name="kokoro-v0_19.pth"):
    global MODEL,device
    update_model(model_name)
    if not minimum_silence:
        minimum_silence = 0.05
    keep_silence = int(minimum_silence * 1000)
    podcast_save_at=podcast(MODEL, device,text,remove_silence=remove_silence, minimum_silence=keep_silence)
    return podcast_save_at
    


dummpy_example="""{af} Hello, I'd like to order a sandwich please.                                                         
{af_sky} What do you mean you're out of bread?                                                                      
{af_bella} I really wanted a sandwich though...                                                              
{af_nicole} You know what, darn you and your little shop!                                                                       
{bm_george} I'll just go back home and cry now.                                                                           
{am_adam} Why me?"""
with gr.Blocks() as demo2:
    gr.Markdown(
        """
    # Multiple Speech-Type Generation
    This section allows you to generate multiple speech types or multiple people's voices. Enter your text in the format shown below, and the system will generate speech using the appropriate type. If unspecified, the model will use "af" voice.
    Format:
    {voice_name} your text here
    """
    )
    with gr.Row():
        gr.Markdown(
            """
            **Example Input:**                                                                      
            {af} Hello, I'd like to order a sandwich please.                                                         
            {af_sky} What do you mean you're out of bread?                                                                      
            {af_bella} I really wanted a sandwich though...                                                              
            {af_nicole} You know what, darn you and your little shop!                                                                       
            {bm_george} I'll just go back home and cry now.                                                                           
            {am_adam} Why me?!                                                                         
            """
        )
    with gr.Row():
        with gr.Column():
            text = gr.Textbox(
                label='Enter Text',
                lines=7,
                placeholder=dummpy_example
            )
            with gr.Row():
                generate_btn = gr.Button('Generate', variant='primary')
            with gr.Accordion('Audio Settings', open=False):
                remove_silence = gr.Checkbox(value=False, label='✂️ Remove Silence From TTS')
                minimum_silence = gr.Number(
                    label="Keep Silence Upto (In seconds)", 
                    value=0.20
                )
        with gr.Column():
            audio = gr.Audio(interactive=False, label='Output Audio', autoplay=True)
            with gr.Accordion('Enable Autoplay', open=False):
                autoplay = gr.Checkbox(value=True, label='Autoplay')
                autoplay.change(toggle_autoplay, inputs=[autoplay], outputs=[audio])

    text.submit(
        podcast_maker, 
        inputs=[text, remove_silence, minimum_silence], 
        outputs=[audio]
    )
    generate_btn.click(
        podcast_maker, 
        inputs=[text, remove_silence, minimum_silence], 
        outputs=[audio]
    )

display_text = "  \n".join(voice_list)

with gr.Blocks() as demo3:
    gr.Markdown(f"# Voice Names \n{display_text}")

import click
@click.command()
@click.option("--debug", is_flag=True, default=False, help="Enable debug mode.")
@click.option("--share", is_flag=True, default=False, help="Enable sharing of the interface.")
def main(debug, share):
    demo = gr.TabbedInterface([demo1, demo2,demo3], ["Batched TTS", "Multiple Speech-Type Generation","Available Voice Names"],title="Kokoro TTS")

    demo.queue().launch(debug=debug, share=share)
    #Run on local network
    # laptop_ip="192.168.0.30"
    # port=8080
    # demo.queue().launch(debug=debug, share=share,server_name=laptop_ip,server_port=port)

if __name__ == "__main__":
    main()    


##For client side
# from gradio_client import Client
# import shutil
# import os
# os.makedirs("temp_audio", exist_ok=True)
# from gradio_client import Client
# client = Client("http://127.0.0.1:7860/")
# result = client.predict(
# 		text="Hello!!",
# 		model_name="kokoro-v0_19.pth",
# 		voice_name="af_bella",
# 		speed=1,
# 		trim=0,
# 		pad_between_segments=0,
# 		remove_silence=False,
# 		minimum_silence=0.05,
# 		api_name="/text_to_speech"
# )

# save_at=f"./temp_audio/{os.path.basename(result)}"
# shutil.move(result, save_at)
# print(f"Saved at {save_at}")