File size: 14,068 Bytes
095af13
 
 
 
 
 
2fb0118
84574b6
87c3c2a
 
51ed446
38f35ec
0eb04e4
4deaaad
 
85ce074
7a0283e
095af13
 
 
 
bea0315
 
22d0bb6
 
3597a5d
22d0bb6
095af13
 
 
 
 
 
 
 
 
 
 
2201892
9494916
095af13
 
 
 
 
 
 
 
 
 
 
 
59f11b4
095af13
 
 
 
 
 
 
 
 
 
58d61a1
 
 
 
 
 
 
 
7a0283e
58d61a1
 
 
 
 
 
 
 
 
 
 
7a0283e
 
 
d5c31be
7a0283e
 
a014c9f
7a0283e
 
 
 
 
 
 
 
d5c31be
7a0283e
 
 
 
 
 
 
8dd1a05
 
 
a014c9f
 
 
8dd1a05
 
 
 
 
 
685d9ff
 
 
 
 
11cf37d
 
8dd1a05
 
 
 
 
 
2af4d6d
 
 
9f8372e
 
2af4d6d
 
 
 
5af4057
9f8372e
 
52f5da4
 
9f8372e
f7f0a4c
9f8372e
 
45b4d1a
 
 
 
9f8372e
45b4d1a
 
 
9f8372e
2af4d6d
 
 
 
0b4abe4
 
87c3c2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e30d518
 
 
 
87c3c2a
38f35ec
f12a8d4
38f35ec
 
 
 
 
 
 
 
85ce074
38f35ec
 
 
 
 
 
87c3c2a
 
 
 
 
 
 
 
 
 
 
4deaaad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0eb04e4
0b4abe4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af4d6d
0eb04e4
58d61a1
095af13
3f43266
211b824
bcaeb16
095af13
 
4ca849c
095af13
87c3c2a
 
 
 
 
 
 
095af13
 
 
 
 
 
 
4ca849c
ceeb8a8
4ca849c
095af13
 
4ca849c
095af13
 
 
 
 
4ca849c
 
095af13
 
 
 
 
 
 
 
 
 
8c53df2
58d61a1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2af4d6d
9f8372e
2af4d6d
9f8372e
239892a
2af4d6d
 
 
 
 
 
 
 
 
 
 
 
9f8372e
239892a
2af4d6d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3366c30
 
 
b1819dc
3366c30
 
 
 
 
 
 
 
 
5af4057
87c3c2a
1f10f3f
3dd73af
 
51ed446
3dd73af
 
 
 
 
 
 
 
 
7f476e3
a1c6dd2
3dd73af
211b824
a8b15f5
7e84ef0
e30d518
 
 
 
 
87c3c2a
e30d518
211b824
 
e8434c9
7a0283e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
const os = require('os')
const bytes = require('bytes')
const sharp = require('sharp')
const morgan = require('morgan')
const express = require('express')
const PDFDocument = require('pdfkit')
const axios = require("axios")
const FormData = require("form-data")
const tfjs = require('@tensorflow/tfjs-node')
const nsfwjs = require('nsfwjs')
const jpegjs = require('jpeg-js')
const fileType = require("file-type")
//const { BingChat } = (await import("bing-chat")).default

const { insta_iwaId, insta_iwaIdUrl, insta_iwa, insta_iwaTag } = require("./lib/instagram.js")
const { allToJpg } = require("./lib/convertFormat.js")
const apikey = "@SadTeam77"

const app = express()
app.set('json spaces', 4)
app.use(morgan('dev'))
app.use(express.json({ limit: "500mb" }))
app.use(express.urlencoded({ limit: '500mb', extended: true }))
app.use((req, res, next) => {
  load_model(),
  next()
})

app.all('/', (req, res) => {
	const status = {}
	const used = process.memoryUsage()
	for (let key in used) status[key] = formatSize(used[key])
	
	const totalmem = os.totalmem()
	const freemem = os.freemem()
	status.memoryUsage = `${formatSize(totalmem - freemem)} / ${formatSize(totalmem)}`
	
	res.json({
		creator: "@SadTeams",
		message: 'Hello World!!',
		uptime: new Date(process.uptime() * 1000).toUTCString().split(' ')[4],
		status
	})
})

app.post('/imagetopdf', async (req, res) => {
	try {
		console.log(req.body)
		const { images } = req.body
		if (!images) return res.json({ success: false, message: 'Required an array image url' })
		
		const buffer = await toPDF(images)
		res.setHeader('Content-Disposition', `attachment; filename=${Math.random().toString(36).slice(2)}.pdf`)
		res.setHeader('Content-Type', 'application/pdf')
		res.setHeader('Content-Length', buffer.byteLength)
		res.send(buffer)
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})

app.post('/api/chatgpt', async (req, res) => {
	try {
		console.log(req.body)
		const { prompt, model, status } = req.body
		if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
        if (!model) return res.json({ success: false, message: 'Required an model version!' })
        if (!status) return res.json({ success: false, message: 'Required an prompt text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await acytoo(prompt, model)
        res.json({
          status: "ok",
          result: response
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/chatgpt2', async (req, res) => {
	try {
		console.log(req.body)
		const { data, prompt, status } = req.body
        if (!data) return res.json({ success: false, message: 'Required an data text!' })
		if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await axios.request({
          method: "GET",
          url: `https://aemt.me/prompt/gpt?prompt=${data}&text=${prompt}`
        })
        res.json({
          status: "ok",
          result: response.data.result
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/toanime', async (req, res) => {
	try {
		console.log(req.body)
		const { url, status } = req.body
        if (!url) return res.json({ success: false, message: 'Required an url!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await axios.request({
          method: "GET",
          url: `https://aemt.me/toanime?url=${url}`
        })
        const image = await axios.request({
          method: "GET", 
          url: response.data.url.img_crop_single,
          responseType: "arraybuffer" 
        })
        res.setHeader('Content-Type', 'image/jpeg')
        res.send(image.data)
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/waifu2x', async (req, res) => {
	try {
		console.log(req.body)
		const { images, format, status } = req.body
        if (!images) return res.json({ success: false, message: 'Required an images!' })
        if (!format) return res.json({ success: false, message: 'Required an format size!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if (/^(https?|http):\/\//i.test(images)) {
          const data_img = await axios.request({
            method: "GET",
            url: images,
            responseType: "arraybuffer"
          })
          const response = await waifu2x(data_img.data, format)
          res.setHeader('Content-Type', 'image/jpg')
          res.send(response)
        } else if (images && typeof images == 'string' && isBase64(images)) {
	   	  const response = await waifu2x(Buffer.from(images, "base64"), format)
          res.setHeader('Content-Type', 'image/jpg')
          res.send(response)
        } else {
          res.json({
            success: false, message: 'No url or base64 detected!!' 
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/nsfw-check', async (req, res) => {
	try {
		console.log(req.body)
		const { images, status } = req.body
        if (!images) return res.json({ success: false, message: 'Required an images!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
        if (/^(https?|http):\/\//i.test(images)) {
          const data_img = await axios.request({
            method: "GET",
            url: images,
            responseType: "arraybuffer"
          })
          const response = await check_nsfw(data_img.data)
          res.json({
            status: "ok",
            result: response
          })
        } else if (images && typeof images == 'string' && isBase64(images)) {
	   	  const img = Buffer.from(images, "base64")
          const type = await fileType.fromBuffer(img)
          if (type.ext == "jpg") {
            let response = await check_nsfw(img)
            res.json({
              status: "ok",
              result: response
            })
          }
          if (type.ext == "webp") {
            let converting = await allToJpg(img)
            let response = await check_nsfw(converting)
            res.json({
              status: "ok",
              result: response
            })
          }
        } else {
          res.json({
            success: false, message: 'No url or base64 detected!!' 
          })
        }
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
app.post('/api/instagram-stalk', async (req, res) => {
	try {
		console.log(req.body)
		const { username, status } = req.body
        if (!username) return res.json({ success: false, message: 'Required an data text!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const response = await insta_iwa(username)
        res.json({
          status: "ok",
          result: response
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})
/*app.post('/api/bingchat', async (req, res) => {
	try {
		console.log(req.body)
		const { prompt, status } = req.body
        if (!prompt) return res.json({ success: false, message: 'Required an prompt text!' })
        if (!status) return res.json({ success: false, message: 'Required an status text!' })

        if(status !== apikey) return res.json({ success: false, message: 'Invalid status!' })
		const api = new BingChat({
          cookie: process.env.BING_COOKIE
        })
        const resonse = await api.sendMessage(prompt)
        res.json({
          status: "ok",
          result: response.text
        })
	} catch (e) {
		console.log(e)
		e = String(e)
		res.json({ error: true, message: e === '[object Object]' ? 'Internal Server Error' : e })
	}
})*/

const PORT = process.env.PORT || 7860
app.listen(PORT, () => {
  console.log('App running on port', PORT)
})                         

function formatSize(num) {
	return bytes(+num || 0, { unitSeparator: ' ' })
}
function isBase64(str) {
	try {
		return btoa(atob(str)) === str
	} catch {
		return false
	}
}
function toPDF(urls) {
	return new Promise(async (resolve, reject) => {
		try {
			if (!Array.isArray(urls)) urls = [urls]
			const doc = new PDFDocument({ margin: 0, size: 'A4' })
			const buffers = []
			
			for (let i = 0; i < urls.length; i++) {
				const response = await fetch(urls[i], { headers: { referer: urls[i] }})
				if (!response.ok) continue
				
				const type = response.headers.get('content-type')
				if (!/image/.test(type)) continue
				
				let buffer = Buffer.from(await response.arrayBuffer())
				if (/gif|webp/.test(type)) buffer = await sharp(buffer).png().toBuffer()
				
				doc.image(buffer, 0, 0, { fit: [595.28, 841.89], align: 'center', valign: 'center' })
				if (urls.length !== i + 1) doc.addPage()
			}
			
			doc.on('data', (chunk) => buffers.push(chunk))
			doc.on('end', () => resolve(Buffer.concat(buffers)))
			doc.on('error', reject)
			doc.end()
		} catch (e) {
			console.log(e)
			reject(e)
		}
	})
}
async function acytoo(text, model) {
    let res = await axios.request({
        method: "POST",
        url: "https://chat.acytoo.com/api/completions",
        data: JSON.stringify({
            key: "",
            messages: [{
                role: "user", 
                content: text,
                createAt: "",
            }],
            model: model,
            password: "",
            temprature: 1
        }),
        headres: {
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/117.0.0.0 Safari/537.36",
            "Origin": "https://chat.acytoo.com"
        }
    })
  return res.data
}
async function waifu2x(image, formats) {
    // data
  //let img = await axios.get(urls, { responseType: "arraybuffer"})
  let random_numbers = Math.floor(Math.random() * 1000)
  let format
    if(formats == "Medium") {
      format = "1"
    } else if(formats == "High") {
      format = "2"
    } else if(!formats) {
      format = "0"
    }
    // memasukan data api
    const formData = new FormData()
    formData.append("denoise", format)
    formData.append("scale", "true")
    formData.append("file", image, {
        filename: "images_" + random_numbers.toString().padStart(3, '0') + ".jpg",
        contentType: "image/jpeg"
    })

    // request ke api untuk mendapatkan hash nya
    const response = await axios.request({
        method: "POST",
        url: "https://api.alcaamado.es/api/v1/waifu2x/convert",
        data: formData,
        headers: {
            "Accept": "application/json",
            "Referer": "https://waifu2x.pro/",
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
        }
    })

    const ress = await axios.request({
        method: "GET",
        url: "https://api.alcaamado.es/api/v2/waifu2x/check?hash=" + response.data.hash,
        headers: {
            "Accept": "application/json",
            "Referer": "https://waifu2x.pro/",
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
        }
    })

    if(!ress.data.finished) return "Images Not Supported!!"

    const images = await axios.request({
          method: "GET",
          url: "https://api.alcaamado.es/api/v2/waifu2x/get?hash=" + response.data.hash + "&type=jpg",
          headers: {
            "Accept": "image/webp,image/apng,image/svg+xml,image/*,*/*;q=0.8",
            "Content-Type": "image/jpg",
            "Referer": "https://waifu2x.pro/",
            "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/119.0.0.0 Safari/537.36 Edg/119.0.0.0"
          },
          responseType: "arraybuffer"
    })
    return images.data
}
async function check_nsfw(buffer) {
  let _model = await load_model()
  const convert = async (img) => {
  // Decoded image in UInt8 Byte array
    const image = await jpegjs.decode(img, { useTArray: true })

    const numChannels = 3
    const numPixels = image.width * image.height
    const values = new Int32Array(numPixels * numChannels)

    for (let i = 0; i < numPixels; i++)
      for (let c = 0; c < numChannels; ++c)
        values[i * numChannels + c] = image.data[i * 4 + c]

    return tfjs.tensor3d(values, [image.height, image.width, numChannels], 'int32')
  }
  const image = await convert(buffer)
  const predictions = await _model.classify(image)
  image.dispose();
  const results = predictions.map(v => {
    return {
      class_name: v.className,
      probability: v.probability,
      probability_percent: (v.probability * 100).toFixed(2)
    }
  })
  return results
}
async function load_model() {
  return await nsfwjs.load()
}