NegiTurkey commited on
Commit
e617194
·
verified ·
1 Parent(s): 484d74f

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -0
app.py ADDED
@@ -0,0 +1,124 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_imageslider import ImageSlider
3
+ from loadimg import load_img
4
+ import spaces
5
+ from transformers import AutoModelForImageSegmentation
6
+ import torch
7
+ from torchvision import transforms
8
+ import zipfile
9
+
10
+ torch.set_float32_matmul_precision(["high", "highest"][0])
11
+
12
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
13
+ "ZhengPeng7/BiRefNet", trust_remote_code=True
14
+ )
15
+ birefnet.to("cuda")
16
+ transform_image = transforms.Compose(
17
+ [
18
+ transforms.Resize((1024, 1024)),
19
+ transforms.ToTensor(),
20
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
21
+ ]
22
+ )
23
+
24
+ @spaces.GPU
25
+ def fn(image):
26
+ im = load_img(image, output_type="pil")
27
+ im = im.convert("RGB")
28
+ image_size = im.size
29
+ origin = im.copy()
30
+ input_images = transform_image(im).unsqueeze(0).to("cuda")
31
+
32
+ with torch.no_grad():
33
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
34
+ pred = preds[0].squeeze()
35
+ pred_pil = transforms.ToPILImage()(pred)
36
+ mask = pred_pil.resize(image_size)
37
+ im.putalpha(mask)
38
+
39
+ output_file_path = os.path.join("output_images", "output_image_single.png")
40
+ im.save(output_file_path)
41
+
42
+ return (im, origin)
43
+
44
+ @spaces.GPU
45
+ def fn_url(url):
46
+ im = load_img(url, output_type="pil")
47
+ im = im.convert("RGB")
48
+ origin = im.copy()
49
+ image_size = im.size
50
+ input_images = transform_image(im).unsqueeze(0).to("cuda")
51
+
52
+ with torch.no_grad():
53
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
54
+ pred = preds[0].squeeze()
55
+ pred_pil = transforms.ToPILImage()(pred)
56
+ mask = pred_pil.resize(image_size)
57
+ im.putalpha(mask)
58
+
59
+ output_file_path = os.path.join("output_images", "output_image_url.png")
60
+ im.save(output_file_path)
61
+
62
+ return [im, origin]
63
+
64
+ @spaces.GPU
65
+ def batch_fn(images):
66
+ output_paths = []
67
+ for idx, image_path in enumerate(images):
68
+ im = load_img(image_path, output_type="pil")
69
+ im = im.convert("RGB")
70
+ image_size = im.size
71
+ input_images = transform_image(im).unsqueeze(0).to("cuda")
72
+
73
+ with torch.no_grad():
74
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
75
+ pred = preds[0].squeeze()
76
+ pred_pil = transforms.ToPILImage()(pred)
77
+ mask = pred_pil.resize(image_size)
78
+ im.putalpha(mask)
79
+
80
+ output_file_path = os.path.join("output_images", f"output_image_batch_{idx + 1}.png")
81
+ im.save(output_file_path)
82
+ output_paths.append(output_file_path)
83
+
84
+ zip_file_path = os.path.join("output_images", "processed_images.zip")
85
+ with zipfile.ZipFile(zip_file_path, 'w') as zipf:
86
+ for file in output_paths:
87
+ zipf.write(file, os.path.basename(file))
88
+
89
+ return zip_file_path
90
+
91
+ batch_image = gr.File(label="Upload multiple images", type="filepath", file_count="multiple") # 複数画像のアップロードを許可
92
+
93
+ slider1 = ImageSlider(label="Processed Image", type="pil")
94
+ slider2 = ImageSlider(label="Processed Image from URL", type="pil")
95
+ image = gr.Image(label="Upload an image")
96
+ text = gr.Textbox(label="Paste an image URL")
97
+
98
+ chameleon = load_img("chameleon.jpg", output_type="pil")
99
+ url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
100
+
101
+ tab1 = gr.Interface(
102
+ fn, inputs=image, outputs=slider1, examples=[chameleon], api_name="image"
103
+ )
104
+
105
+ tab2 = gr.Interface(fn_url, inputs=text, outputs=slider2, examples=[url], api_name="text")
106
+
107
+ tab3 = gr.Interface(
108
+ batch_fn,
109
+ inputs=batch_image,
110
+ outputs=gr.File(label="Download Processed Files"),
111
+ api_name="batch",
112
+ css="""
113
+ #component-37 {
114
+ display: none;
115
+ }
116
+ """
117
+ )
118
+
119
+ demo = gr.TabbedInterface(
120
+ [tab1, tab2, tab3], ["image", "text", "batch"], title="Multi Birefnet for Background Removal"
121
+ )
122
+
123
+ if __name__ == "__main__":
124
+ demo.launch()