Spaces:
Sleeping
Sleeping
Create app.py
Browse filesThis is the app.py file
app.py
ADDED
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import shutil
|
3 |
+
import streamlit as st
|
4 |
+
from langchain_core.prompts import ChatPromptTemplate
|
5 |
+
from langchain_community.vectorstores import FAISS
|
6 |
+
from langchain_core.output_parsers import StrOutputParser
|
7 |
+
from langchain_core.runnables import RunnablePassthrough
|
8 |
+
from langchain_community.llms import Together
|
9 |
+
from langchain_community.document_loaders import UnstructuredPDFLoader
|
10 |
+
from langchain.text_splitter import CharacterTextSplitter
|
11 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
+
|
13 |
+
os.environ["TOGETHER_API_KEY"] = os.getenv("TOGETHER_API_KEY")
|
14 |
+
|
15 |
+
|
16 |
+
def inference(chain, input_query):
|
17 |
+
"""Invoke the processing chain with the input query."""
|
18 |
+
result = chain.invoke(input_query)
|
19 |
+
return result
|
20 |
+
|
21 |
+
|
22 |
+
def create_chain(retriever, prompt, model):
|
23 |
+
"""Compose the processing chain with the specified components."""
|
24 |
+
chain = (
|
25 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
26 |
+
| prompt
|
27 |
+
| model
|
28 |
+
| StrOutputParser()
|
29 |
+
)
|
30 |
+
return chain
|
31 |
+
|
32 |
+
|
33 |
+
def generate_prompt():
|
34 |
+
"""Define the prompt template for question answering."""
|
35 |
+
template = """<s>[INST] Answer the question in a simple sentence based only on the following context:
|
36 |
+
{context}
|
37 |
+
Question: {question} [/INST]
|
38 |
+
"""
|
39 |
+
return ChatPromptTemplate.from_template(template)
|
40 |
+
|
41 |
+
|
42 |
+
def configure_model():
|
43 |
+
"""Configure the language model with specified parameters."""
|
44 |
+
return Together(
|
45 |
+
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
46 |
+
temperature=0.1,
|
47 |
+
max_tokens=3000,
|
48 |
+
top_k=50,
|
49 |
+
top_p=0.7,
|
50 |
+
repetition_penalty=1.1,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
def configure_retriever(pdf_loader):
|
55 |
+
"""Configure the retriever with embeddings and a FAISS vector store."""
|
56 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
57 |
+
vector_db = FAISS.from_documents(pdf_loader, embeddings)
|
58 |
+
return vector_db.as_retriever()
|
59 |
+
|
60 |
+
|
61 |
+
def load_documents(path):
|
62 |
+
"""Load and preprocess documents from PDF files located at the specified path."""
|
63 |
+
pdf_loader = []
|
64 |
+
for file in os.listdir(path):
|
65 |
+
if file.endswith('.pdf'):
|
66 |
+
filepath = os.path.join(path, file)
|
67 |
+
loader = UnstructuredPDFLoader(filepath)
|
68 |
+
documents = loader.load()
|
69 |
+
text_splitter = CharacterTextSplitter(chunk_size=18000, chunk_overlap=10)
|
70 |
+
docs = text_splitter.split_documents(documents)
|
71 |
+
pdf_loader.extend(docs)
|
72 |
+
return pdf_loader
|
73 |
+
|
74 |
+
|
75 |
+
def process_document(path, input_query):
|
76 |
+
"""Process the document by setting up the chain and invoking it with the input query."""
|
77 |
+
pdf_loader = load_documents(path)
|
78 |
+
llm_model = configure_model()
|
79 |
+
prompt = generate_prompt()
|
80 |
+
retriever = configure_retriever(pdf_loader)
|
81 |
+
chain = create_chain(retriever, prompt, llm_model)
|
82 |
+
response = inference(chain, input_query)
|
83 |
+
return response
|
84 |
+
|
85 |
+
|
86 |
+
def main():
|
87 |
+
"""Main function to run the Streamlit app."""
|
88 |
+
tmp_folder = '/tmp/1'
|
89 |
+
os.makedirs(tmp_folder,exist_ok=True)
|
90 |
+
|
91 |
+
st.title("Q&A PDF AI RAG Chatbot")
|
92 |
+
|
93 |
+
uploaded_files = st.sidebar.file_uploader("Choose PDF files", accept_multiple_files=True, type='pdf')
|
94 |
+
if uploaded_files:
|
95 |
+
for file in uploaded_files:
|
96 |
+
with open(os.path.join(tmp_folder, file.name), 'wb') as f:
|
97 |
+
f.write(file.getbuffer())
|
98 |
+
st.success('File successfully uploaded. Start prompting!')
|
99 |
+
if 'chat_history' not in st.session_state:
|
100 |
+
st.session_state.chat_history = []
|
101 |
+
|
102 |
+
if uploaded_files:
|
103 |
+
with st.form(key='question_form'):
|
104 |
+
user_query = st.text_input("Ask a question:", key="query_input")
|
105 |
+
if st.form_submit_button("Ask") and user_query:
|
106 |
+
response = process_document(tmp_folder, user_query)
|
107 |
+
st.session_state.chat_history.append({"question": user_query, "answer": response})
|
108 |
+
|
109 |
+
if st.button("Clear Chat History"):
|
110 |
+
st.session_state.chat_history = []
|
111 |
+
for chat in st.session_state.chat_history:
|
112 |
+
st.markdown(f"**Q:** {chat['question']}")
|
113 |
+
st.markdown(f"**A:** {chat['answer']}")
|
114 |
+
st.markdown("---")
|
115 |
+
else:
|
116 |
+
st.success('Upload Document to Start Process !')
|
117 |
+
|
118 |
+
if st.sidebar.button("REMOVE UPLOADED FILES"):
|
119 |
+
document_count = os.listdir(tmp_folder)
|
120 |
+
if len(document_count) > 0:
|
121 |
+
shutil.rmtree(tmp_folder)
|
122 |
+
st.sidebar.write("FILES DELETED SUCCESSFULLY !!!")
|
123 |
+
else:
|
124 |
+
st.sidebar.write("NO DOCUMENT FOUND TO DELETE !!! PLEASE UPLOAD DOCUMENTS TO START PROCESS !! ")
|
125 |
+
|
126 |
+
|
127 |
+
if __name__ == "__main__":
|
128 |
+
main()
|