Spaces:
Sleeping
Sleeping
File size: 1,547 Bytes
9bdf682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
import streamlit as st
import pickle
import numpy as np
pipe = pickle.load(open('pipe.pkl','rb'))
df = pickle.load(open('df.pkl','rb'))
st.title("Laptop Price Predictor")
company = st.selectbox('Brand',df['Company'].unique())
type = st.selectbox('Type',df['TypeName'].unique())
ram = st.selectbox('RAM(in GB)',[2,4,6,8,12,16,24,32,64])
weight = st.number_input('Weight of the Laptop ')
touchscreen = st.selectbox('Touchscreen',['No','Yes'])
ips = st.selectbox('IPS',['No','Yes'])
screen_size = st.number_input('Screen Size')
resolution = st.selectbox('Screen Resolution',['1920x1080','1366x768','1600x900','3840x2160','3200x1800','2880x1800','2560x1600','2560x1440','2304x1440'])
cpu = st.selectbox('CPU',df['Cpu brand'].unique())
hdd = st.selectbox('HDD(in GB)',[0,128,256,512,1024,2048])
ssd = st.selectbox('SSD(in GB)',[0,8,128,256,512,1024])
gpu = st.selectbox('GPU',df['Gpu Brand'].unique())
os = st.selectbox('OS',df['OS_Brand'].unique())
if st.button('Predict Price'):
ppi = None
if touchscreen == 'Yes':
touchscreen = 1
else:
touchscreen = 0
if ips == 'Yes':
ips = 1
else:
ips = 0
X_res = int(resolution.split('x')[0])
Y_res = int(resolution.split('x')[1])
ppi = ((X_res**2) + (Y_res**2))**0.5/screen_size
query = np.array([company,type,ram,weight,touchscreen,ips,ppi,cpu,hdd,ssd,gpu,os])
query = query.reshape(1,12)
st.title("The predicted Price of this Configuration is Rs." + str(int(np.exp(pipe.predict(query)[0])))) |