Nahrawy's picture
Update app.py
631c162
import gradio as gr
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model
def plot(seed, num_points):
# Setting the seed
if seed != -1:
np.random.seed(seed)
num_points = int(num_points)
#Ensuring the number of points is even
if num_points%2 != 0:
num_points +=1
half_num_points = int(num_points/2)
X = np.r_[np.random.randn(half_num_points, 2) + [1, 1], np.random.randn(half_num_points, 2)]
y = [1] * half_num_points + [-1] * half_num_points
sample_weight = 100 * np.abs(np.random.randn(num_points))
# and assign a bigger weight to the second half of samples
sample_weight[:half_num_points] *= 10
# plot the weighted data points
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500))
fig, ax = plt.subplots()
ax.scatter(
X[:, 0],
X[:, 1],
c=y,
s=sample_weight,
alpha=0.9,
cmap=plt.cm.bone,
edgecolor="black",
)
# fit the unweighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
no_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["solid"])
# fit the weighted model
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100)
clf.fit(X, y, sample_weight=sample_weight)
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
samples_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["dashed"])
no_weights_handles, _ = no_weights.legend_elements()
weights_handles, _ = samples_weights.legend_elements()
ax.legend(
[no_weights_handles[0], weights_handles[0]],
["no weights", "with weights"],
loc="lower left",
)
ax.set(xticks=(), yticks=())
return fig
info = ''' # SGD: Weighted samples\n
This is a demonstration of a modified version of [SGD](https://scikit-learn.org/stable/modules/sgd.html#id5) that takes into account the weights of the samples. Where the size of points is proportional to its weight.\n
The algorithm is demonstrated using points sampled from the standard normal distribution, where the weighted class has a mean of one while the non-weighted class has a mean of zero.\n
Created by [@Nahrawy](https://huggingface.co./Nahrawy) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html).
'''
with gr.Blocks() as demo:
gr.Markdown(info)
with gr.Row():
with gr.Column():
seed = gr.Slider(label="Seed", minimum=-1, maximum=10000, step=1,info="Set to -1 to generate new random points each run ",value=-1)
num_points = gr.Slider(label="Number of Points", value="20", minimum=5, maximum=100, step=2)
#btn = gr.Button("Run")
out = gr.Plot()
seed.change(fn=plot, inputs=[seed,num_points] , outputs=out)
num_points.change(fn=plot, inputs=[seed,num_points] , outputs=out)
#btn.click(fn=plot, inputs=[seed,num_points] , outputs=out)
demo.launch()