Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import matplotlib.pyplot as plt | |
from sklearn import linear_model | |
def plot(seed, num_points): | |
# Setting the seed | |
if seed != -1: | |
np.random.seed(seed) | |
num_points = int(num_points) | |
#Ensuring the number of points is even | |
if num_points%2 != 0: | |
num_points +=1 | |
half_num_points = int(num_points/2) | |
X = np.r_[np.random.randn(half_num_points, 2) + [1, 1], np.random.randn(half_num_points, 2)] | |
y = [1] * half_num_points + [-1] * half_num_points | |
sample_weight = 100 * np.abs(np.random.randn(num_points)) | |
# and assign a bigger weight to the second half of samples | |
sample_weight[:half_num_points] *= 10 | |
# plot the weighted data points | |
xx, yy = np.meshgrid(np.linspace(-4, 5, 500), np.linspace(-4, 5, 500)) | |
fig, ax = plt.subplots() | |
ax.scatter( | |
X[:, 0], | |
X[:, 1], | |
c=y, | |
s=sample_weight, | |
alpha=0.9, | |
cmap=plt.cm.bone, | |
edgecolor="black", | |
) | |
# fit the unweighted model | |
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100) | |
clf.fit(X, y) | |
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) | |
Z = Z.reshape(xx.shape) | |
no_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["solid"]) | |
# fit the weighted model | |
clf = linear_model.SGDClassifier(alpha=0.01, max_iter=100) | |
clf.fit(X, y, sample_weight=sample_weight) | |
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()]) | |
Z = Z.reshape(xx.shape) | |
samples_weights = ax.contour(xx, yy, Z, levels=[0], linestyles=["dashed"]) | |
no_weights_handles, _ = no_weights.legend_elements() | |
weights_handles, _ = samples_weights.legend_elements() | |
ax.legend( | |
[no_weights_handles[0], weights_handles[0]], | |
["no weights", "with weights"], | |
loc="lower left", | |
) | |
ax.set(xticks=(), yticks=()) | |
return fig | |
info = ''' # SGD: Weighted samples\n | |
This is a demonstration of a modified version of [SGD](https://scikit-learn.org/stable/modules/sgd.html#id5) that takes into account the weights of the samples. Where the size of points is proportional to its weight.\n | |
The algorithm is demonstrated using points sampled from the standard normal distribution, where the weighted class has a mean of one while the non-weighted class has a mean of zero.\n | |
Created by [@Nahrawy](https://huggingface.co./Nahrawy) based on [scikit-learn docs](https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html). | |
''' | |
with gr.Blocks() as demo: | |
gr.Markdown(info) | |
with gr.Row(): | |
with gr.Column(): | |
seed = gr.Slider(label="Seed", minimum=-1, maximum=10000, step=1,info="Set to -1 to generate new random points each run ",value=-1) | |
num_points = gr.Slider(label="Number of Points", value="20", minimum=5, maximum=100, step=2) | |
#btn = gr.Button("Run") | |
out = gr.Plot() | |
seed.change(fn=plot, inputs=[seed,num_points] , outputs=out) | |
num_points.change(fn=plot, inputs=[seed,num_points] , outputs=out) | |
#btn.click(fn=plot, inputs=[seed,num_points] , outputs=out) | |
demo.launch() |