|
''' |
|
Downloads models from Hugging Face to models/username_modelname. |
|
|
|
Example: |
|
python download-model.py facebook/opt-1.3b |
|
|
|
''' |
|
|
|
import argparse |
|
import base64 |
|
import datetime |
|
import hashlib |
|
import json |
|
import os |
|
import re |
|
import sys |
|
from pathlib import Path |
|
|
|
import requests |
|
import tqdm |
|
from requests.adapters import HTTPAdapter |
|
from tqdm.contrib.concurrent import thread_map |
|
|
|
base = "https://huggingface.co." |
|
|
|
|
|
class ModelDownloader: |
|
def __init__(self, max_retries=5): |
|
self.session = requests.Session() |
|
if max_retries: |
|
self.session.mount('https://cdn-lfs.huggingface.co', HTTPAdapter(max_retries=max_retries)) |
|
self.session.mount('https://huggingface.co.', HTTPAdapter(max_retries=max_retries)) |
|
|
|
if os.getenv('HF_USER') is not None and os.getenv('HF_PASS') is not None: |
|
self.session.auth = (os.getenv('HF_USER'), os.getenv('HF_PASS')) |
|
|
|
try: |
|
from huggingface_hub import get_token |
|
token = get_token() |
|
except ImportError: |
|
token = os.getenv("HF_TOKEN") |
|
|
|
if token is not None: |
|
self.session.headers = {'authorization': f'Bearer {token}'} |
|
|
|
def sanitize_model_and_branch_names(self, model, branch): |
|
if model[-1] == '/': |
|
model = model[:-1] |
|
|
|
if model.startswith(base + '/'): |
|
model = model[len(base) + 1:] |
|
|
|
model_parts = model.split(":") |
|
model = model_parts[0] if len(model_parts) > 0 else model |
|
branch = model_parts[1] if len(model_parts) > 1 else branch |
|
|
|
if branch is None: |
|
branch = "main" |
|
else: |
|
pattern = re.compile(r"^[a-zA-Z0-9._-]+$") |
|
if not pattern.match(branch): |
|
raise ValueError( |
|
"Invalid branch name. Only alphanumeric characters, period, underscore and dash are allowed.") |
|
|
|
return model, branch |
|
|
|
def get_download_links_from_huggingface(self, model, branch, text_only=False, specific_file=None): |
|
page = f"/api/models/{model}/tree/{branch}" |
|
cursor = b"" |
|
|
|
links = [] |
|
sha256 = [] |
|
classifications = [] |
|
has_pytorch = False |
|
has_pt = False |
|
has_gguf = False |
|
has_safetensors = False |
|
is_lora = False |
|
while True: |
|
url = f"{base}{page}" + (f"?cursor={cursor.decode()}" if cursor else "") |
|
r = self.session.get(url, timeout=10) |
|
r.raise_for_status() |
|
content = r.content |
|
|
|
dict = json.loads(content) |
|
if len(dict) == 0: |
|
break |
|
|
|
for i in range(len(dict)): |
|
fname = dict[i]['path'] |
|
if specific_file not in [None, ''] and fname != specific_file: |
|
continue |
|
|
|
if not is_lora and fname.endswith(('adapter_config.json', 'adapter_model.bin')): |
|
is_lora = True |
|
|
|
is_pytorch = re.match(r"(pytorch|adapter|gptq)_model.*\.bin", fname) |
|
is_safetensors = re.match(r".*\.safetensors", fname) |
|
is_pt = re.match(r".*\.pt", fname) |
|
is_gguf = re.match(r'.*\.gguf', fname) |
|
is_tiktoken = re.match(r".*\.tiktoken", fname) |
|
is_tokenizer = re.match(r"(tokenizer|ice|spiece).*\.model", fname) or is_tiktoken |
|
is_text = re.match(r".*\.(txt|json|py|md)", fname) or is_tokenizer |
|
if any((is_pytorch, is_safetensors, is_pt, is_gguf, is_tokenizer, is_text)): |
|
if 'lfs' in dict[i]: |
|
sha256.append([fname, dict[i]['lfs']['oid']]) |
|
|
|
if is_text: |
|
links.append(f"https://huggingface.co./{model}/resolve/{branch}/{fname}") |
|
classifications.append('text') |
|
continue |
|
|
|
if not text_only: |
|
links.append(f"https://huggingface.co./{model}/resolve/{branch}/{fname}") |
|
if is_safetensors: |
|
has_safetensors = True |
|
classifications.append('safetensors') |
|
elif is_pytorch: |
|
has_pytorch = True |
|
classifications.append('pytorch') |
|
elif is_pt: |
|
has_pt = True |
|
classifications.append('pt') |
|
elif is_gguf: |
|
has_gguf = True |
|
classifications.append('gguf') |
|
|
|
cursor = base64.b64encode(f'{{"file_name":"{dict[-1]["path"]}"}}'.encode()) + b':50' |
|
cursor = base64.b64encode(cursor) |
|
cursor = cursor.replace(b'=', b'%3D') |
|
|
|
|
|
if (has_pytorch or has_pt) and has_safetensors: |
|
for i in range(len(classifications) - 1, -1, -1): |
|
if classifications[i] in ['pytorch', 'pt']: |
|
links.pop(i) |
|
|
|
|
|
|
|
|
|
if has_gguf and specific_file is None: |
|
has_q4km = False |
|
for i in range(len(classifications) - 1, -1, -1): |
|
if 'q4_k_m' in links[i].lower(): |
|
has_q4km = True |
|
|
|
if has_q4km: |
|
for i in range(len(classifications) - 1, -1, -1): |
|
if 'q4_k_m' not in links[i].lower(): |
|
links.pop(i) |
|
else: |
|
for i in range(len(classifications) - 1, -1, -1): |
|
if links[i].lower().endswith('.gguf'): |
|
links.pop(i) |
|
|
|
is_llamacpp = has_gguf and specific_file is not None |
|
return links, sha256, is_lora, is_llamacpp |
|
|
|
def get_output_folder(self, model, branch, is_lora, is_llamacpp=False, base_folder=None): |
|
if base_folder is None: |
|
base_folder = 'models' if not is_lora else 'loras' |
|
|
|
|
|
if is_llamacpp: |
|
return Path(base_folder) |
|
|
|
output_folder = f"{'_'.join(model.split('/')[-2:])}" |
|
if branch != 'main': |
|
output_folder += f'_{branch}' |
|
|
|
output_folder = Path(base_folder) / output_folder |
|
return output_folder |
|
|
|
def get_single_file(self, url, output_folder, start_from_scratch=False): |
|
filename = Path(url.rsplit('/', 1)[1]) |
|
output_path = output_folder / filename |
|
headers = {} |
|
mode = 'wb' |
|
if output_path.exists() and not start_from_scratch: |
|
|
|
|
|
r = self.session.get(url, stream=True, timeout=10) |
|
total_size = int(r.headers.get('content-length', 0)) |
|
if output_path.stat().st_size >= total_size: |
|
return |
|
|
|
|
|
headers = {'Range': f'bytes={output_path.stat().st_size}-'} |
|
mode = 'ab' |
|
|
|
with self.session.get(url, stream=True, headers=headers, timeout=10) as r: |
|
r.raise_for_status() |
|
total_size = int(r.headers.get('content-length', 0)) |
|
block_size = 1024 * 1024 |
|
|
|
tqdm_kwargs = { |
|
'total': total_size, |
|
'unit': 'iB', |
|
'unit_scale': True, |
|
'bar_format': '{l_bar}{bar}| {n_fmt:6}/{total_fmt:6} {rate_fmt:6}' |
|
} |
|
|
|
if 'COLAB_GPU' in os.environ: |
|
tqdm_kwargs.update({ |
|
'position': 0, |
|
'leave': True |
|
}) |
|
|
|
with open(output_path, mode) as f: |
|
with tqdm.tqdm(**tqdm_kwargs) as t: |
|
count = 0 |
|
for data in r.iter_content(block_size): |
|
t.update(len(data)) |
|
f.write(data) |
|
if total_size != 0 and self.progress_bar is not None: |
|
count += len(data) |
|
self.progress_bar(float(count) / float(total_size), f"{filename}") |
|
|
|
def start_download_threads(self, file_list, output_folder, start_from_scratch=False, threads=4): |
|
thread_map(lambda url: self.get_single_file(url, output_folder, start_from_scratch=start_from_scratch), file_list, max_workers=threads, disable=True) |
|
|
|
def download_model_files(self, model, branch, links, sha256, output_folder, progress_bar=None, start_from_scratch=False, threads=4, specific_file=None, is_llamacpp=False): |
|
self.progress_bar = progress_bar |
|
|
|
|
|
output_folder.mkdir(parents=True, exist_ok=True) |
|
|
|
if not is_llamacpp: |
|
metadata = f'url: https://huggingface.co./{model}\n' \ |
|
f'branch: {branch}\n' \ |
|
f'download date: {datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")}\n' |
|
|
|
sha256_str = '\n'.join([f' {item[1]} {item[0]}' for item in sha256]) |
|
if sha256_str: |
|
metadata += f'sha256sum:\n{sha256_str}' |
|
|
|
metadata += '\n' |
|
(output_folder / 'huggingface-metadata.txt').write_text(metadata) |
|
|
|
if specific_file: |
|
print(f"Downloading {specific_file} to {output_folder}") |
|
else: |
|
print(f"Downloading the model to {output_folder}") |
|
|
|
self.start_download_threads(links, output_folder, start_from_scratch=start_from_scratch, threads=threads) |
|
|
|
def check_model_files(self, model, branch, links, sha256, output_folder): |
|
|
|
validated = True |
|
for i in range(len(sha256)): |
|
fpath = (output_folder / sha256[i][0]) |
|
|
|
if not fpath.exists(): |
|
print(f"The following file is missing: {fpath}") |
|
validated = False |
|
continue |
|
|
|
with open(output_folder / sha256[i][0], "rb") as f: |
|
file_hash = hashlib.file_digest(f, "sha256").hexdigest() |
|
if file_hash != sha256[i][1]: |
|
print(f'Checksum failed: {sha256[i][0]} {sha256[i][1]}') |
|
validated = False |
|
else: |
|
print(f'Checksum validated: {sha256[i][0]} {sha256[i][1]}') |
|
|
|
if validated: |
|
print('[+] Validated checksums of all model files!') |
|
else: |
|
print('[-] Invalid checksums. Rerun download-model.py with the --clean flag.') |
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('MODEL', type=str, default=None, nargs='?') |
|
parser.add_argument('--branch', type=str, default='main', help='Name of the Git branch to download from.') |
|
parser.add_argument('--threads', type=int, default=4, help='Number of files to download simultaneously.') |
|
parser.add_argument('--text-only', action='store_true', help='Only download text files (txt/json).') |
|
parser.add_argument('--specific-file', type=str, default=None, help='Name of the specific file to download (if not provided, downloads all).') |
|
parser.add_argument('--output', type=str, default=None, help='The folder where the model should be saved.') |
|
parser.add_argument('--clean', action='store_true', help='Does not resume the previous download.') |
|
parser.add_argument('--check', action='store_true', help='Validates the checksums of model files.') |
|
parser.add_argument('--max-retries', type=int, default=5, help='Max retries count when get error in download time.') |
|
args = parser.parse_args() |
|
|
|
branch = args.branch |
|
model = args.MODEL |
|
specific_file = args.specific_file |
|
|
|
if model is None: |
|
print("Error: Please specify the model you'd like to download (e.g. 'python download-model.py facebook/opt-1.3b').") |
|
sys.exit() |
|
|
|
downloader = ModelDownloader(max_retries=args.max_retries) |
|
|
|
try: |
|
model, branch = downloader.sanitize_model_and_branch_names(model, branch) |
|
except ValueError as err_branch: |
|
print(f"Error: {err_branch}") |
|
sys.exit() |
|
|
|
|
|
links, sha256, is_lora, is_llamacpp = downloader.get_download_links_from_huggingface(model, branch, text_only=args.text_only, specific_file=specific_file) |
|
|
|
|
|
output_folder = downloader.get_output_folder(model, branch, is_lora, is_llamacpp=is_llamacpp, base_folder=args.output) |
|
|
|
if args.check: |
|
|
|
downloader.check_model_files(model, branch, links, sha256, output_folder) |
|
else: |
|
|
|
downloader.download_model_files(model, branch, links, sha256, output_folder, specific_file=specific_file, threads=args.threads, is_llamacpp=is_llamacpp) |
|
|