File size: 10,533 Bytes
76a12b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 |
import json
import re
from pathlib import Path
import yaml
from modules import chat, loaders, metadata_gguf, shared, ui
def get_fallback_settings():
return {
'wbits': 'None',
'groupsize': 'None',
'desc_act': False,
'model_type': 'None',
'max_seq_len': 2048,
'n_ctx': 2048,
'rope_freq_base': 0,
'compress_pos_emb': 1,
'truncation_length': shared.settings['truncation_length'],
'skip_special_tokens': shared.settings['skip_special_tokens'],
'custom_stopping_strings': shared.settings['custom_stopping_strings'],
}
def get_model_metadata(model):
model_settings = {}
# Get settings from models/config.yaml and models/config-user.yaml
settings = shared.model_config
for pat in settings:
if re.match(pat.lower(), model.lower()):
for k in settings[pat]:
model_settings[k] = settings[pat][k]
path = Path(f'{shared.args.model_dir}/{model}/config.json')
if path.exists():
hf_metadata = json.loads(open(path, 'r', encoding='utf-8').read())
else:
hf_metadata = None
if 'loader' not in model_settings:
if hf_metadata is not None and 'quip_params' in hf_metadata:
loader = 'QuIP#'
else:
loader = infer_loader(model, model_settings)
model_settings['loader'] = loader
# GGUF metadata
if model_settings['loader'] in ['llama.cpp', 'llamacpp_HF', 'ctransformers']:
path = Path(f'{shared.args.model_dir}/{model}')
if path.is_file():
model_file = path
else:
model_file = list(path.glob('*.gguf'))[0]
metadata = metadata_gguf.load_metadata(model_file)
if 'llama.context_length' in metadata:
model_settings['n_ctx'] = metadata['llama.context_length']
if 'llama.rope.scale_linear' in metadata:
model_settings['compress_pos_emb'] = metadata['llama.rope.scale_linear']
if 'llama.rope.freq_base' in metadata:
model_settings['rope_freq_base'] = metadata['llama.rope.freq_base']
if 'tokenizer.chat_template' in metadata:
template = metadata['tokenizer.chat_template']
eos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.eos_token_id']]
bos_token = metadata['tokenizer.ggml.tokens'][metadata['tokenizer.ggml.bos_token_id']]
template = template.replace('eos_token', "'{}'".format(eos_token))
template = template.replace('bos_token', "'{}'".format(bos_token))
template = re.sub(r'raise_exception\([^)]*\)', "''", template)
model_settings['instruction_template'] = 'Custom (obtained from model metadata)'
model_settings['instruction_template_str'] = template
else:
# Transformers metadata
if hf_metadata is not None:
metadata = json.loads(open(path, 'r', encoding='utf-8').read())
if 'max_position_embeddings' in metadata:
model_settings['truncation_length'] = metadata['max_position_embeddings']
model_settings['max_seq_len'] = metadata['max_position_embeddings']
if 'rope_theta' in metadata:
model_settings['rope_freq_base'] = metadata['rope_theta']
if 'rope_scaling' in metadata and type(metadata['rope_scaling']) is dict and all(key in metadata['rope_scaling'] for key in ('type', 'factor')):
if metadata['rope_scaling']['type'] == 'linear':
model_settings['compress_pos_emb'] = metadata['rope_scaling']['factor']
if 'quantization_config' in metadata:
if 'bits' in metadata['quantization_config']:
model_settings['wbits'] = metadata['quantization_config']['bits']
if 'group_size' in metadata['quantization_config']:
model_settings['groupsize'] = metadata['quantization_config']['group_size']
if 'desc_act' in metadata['quantization_config']:
model_settings['desc_act'] = metadata['quantization_config']['desc_act']
# Read AutoGPTQ metadata
path = Path(f'{shared.args.model_dir}/{model}/quantize_config.json')
if path.exists():
metadata = json.loads(open(path, 'r', encoding='utf-8').read())
if 'bits' in metadata:
model_settings['wbits'] = metadata['bits']
if 'group_size' in metadata:
model_settings['groupsize'] = metadata['group_size']
if 'desc_act' in metadata:
model_settings['desc_act'] = metadata['desc_act']
# Try to find the Jinja instruct template
path = Path(f'{shared.args.model_dir}/{model}') / 'tokenizer_config.json'
if path.exists():
metadata = json.loads(open(path, 'r', encoding='utf-8').read())
if 'chat_template' in metadata:
template = metadata['chat_template']
for k in ['eos_token', 'bos_token']:
if k in metadata:
value = metadata[k]
if type(value) is dict:
value = value['content']
template = template.replace(k, "'{}'".format(value))
template = re.sub(r'raise_exception\([^)]*\)', "''", template)
model_settings['instruction_template'] = 'Custom (obtained from model metadata)'
model_settings['instruction_template_str'] = template
if 'instruction_template' not in model_settings:
model_settings['instruction_template'] = 'Alpaca'
if model_settings['instruction_template'] != 'Custom (obtained from model metadata)':
model_settings['instruction_template_str'] = chat.load_instruction_template(model_settings['instruction_template'])
# Ignore rope_freq_base if set to the default value
if 'rope_freq_base' in model_settings and model_settings['rope_freq_base'] == 10000:
model_settings.pop('rope_freq_base')
# Apply user settings from models/config-user.yaml
settings = shared.user_config
for pat in settings:
if re.match(pat.lower(), model.lower()):
for k in settings[pat]:
model_settings[k] = settings[pat][k]
return model_settings
def infer_loader(model_name, model_settings):
path_to_model = Path(f'{shared.args.model_dir}/{model_name}')
if not path_to_model.exists():
loader = None
elif (path_to_model / 'quantize_config.json').exists() or ('wbits' in model_settings and type(model_settings['wbits']) is int and model_settings['wbits'] > 0):
loader = 'ExLlamav2_HF'
elif (path_to_model / 'quant_config.json').exists() or re.match(r'.*-awq', model_name.lower()):
loader = 'AutoAWQ'
elif len(list(path_to_model.glob('*.gguf'))) > 0:
loader = 'llama.cpp'
elif re.match(r'.*\.gguf', model_name.lower()):
loader = 'llama.cpp'
elif re.match(r'.*exl2', model_name.lower()):
loader = 'ExLlamav2_HF'
elif re.match(r'.*-hqq', model_name.lower()):
return 'HQQ'
else:
loader = 'Transformers'
return loader
def update_model_parameters(state, initial=False):
'''
UI: update the command-line arguments based on the interface values
'''
elements = ui.list_model_elements() # the names of the parameters
gpu_memories = []
for i, element in enumerate(elements):
if element not in state:
continue
value = state[element]
if element.startswith('gpu_memory'):
gpu_memories.append(value)
continue
if initial and element in shared.provided_arguments:
continue
# Setting null defaults
if element in ['wbits', 'groupsize', 'model_type'] and value == 'None':
value = vars(shared.args_defaults)[element]
elif element in ['cpu_memory'] and value == 0:
value = vars(shared.args_defaults)[element]
# Making some simple conversions
if element in ['wbits', 'groupsize', 'pre_layer']:
value = int(value)
elif element == 'cpu_memory' and value is not None:
value = f"{value}MiB"
if element in ['pre_layer']:
value = [value] if value > 0 else None
setattr(shared.args, element, value)
found_positive = False
for i in gpu_memories:
if i > 0:
found_positive = True
break
if not (initial and vars(shared.args)['gpu_memory'] != vars(shared.args_defaults)['gpu_memory']):
if found_positive:
shared.args.gpu_memory = [f"{i}MiB" for i in gpu_memories]
else:
shared.args.gpu_memory = None
def apply_model_settings_to_state(model, state):
'''
UI: update the state variable with the model settings
'''
model_settings = get_model_metadata(model)
if 'loader' in model_settings:
loader = model_settings.pop('loader')
# If the user is using an alternative loader for the same model type, let them keep using it
if not (loader == 'ExLlamav2_HF' and state['loader'] in ['GPTQ-for-LLaMa', 'ExLlamav2', 'AutoGPTQ']) and not (loader == 'llama.cpp' and state['loader'] in ['llamacpp_HF', 'ctransformers']):
state['loader'] = loader
for k in model_settings:
if k in state:
if k in ['wbits', 'groupsize']:
state[k] = str(model_settings[k])
else:
state[k] = model_settings[k]
return state
def save_model_settings(model, state):
'''
Save the settings for this model to models/config-user.yaml
'''
if model == 'None':
yield ("Not saving the settings because no model is loaded.")
return
with Path(f'{shared.args.model_dir}/config-user.yaml') as p:
if p.exists():
user_config = yaml.safe_load(open(p, 'r').read())
else:
user_config = {}
model_regex = model + '$' # For exact matches
if model_regex not in user_config:
user_config[model_regex] = {}
for k in ui.list_model_elements():
if k == 'loader' or k in loaders.loaders_and_params[state['loader']]:
user_config[model_regex][k] = state[k]
shared.user_config = user_config
output = yaml.dump(user_config, sort_keys=False)
with open(p, 'w') as f:
f.write(output)
yield (f"Settings for `{model}` saved to `{p}`.")
|