Upload 3 files
Browse files- app.py +201 -0
- requirements.txt +12 -0
- run.sh +3 -0
app.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import subprocess
|
4 |
+
import sys
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Optional, Tuple
|
8 |
+
from urllib.request import urlopen, urlretrieve
|
9 |
+
|
10 |
+
import streamlit as st
|
11 |
+
from huggingface_hub import HfApi, whoami
|
12 |
+
|
13 |
+
logging.basicConfig(level=logging.INFO)
|
14 |
+
logger = logging.getLogger(__name__)
|
15 |
+
|
16 |
+
|
17 |
+
@dataclass
|
18 |
+
class Config:
|
19 |
+
"""Application configuration."""
|
20 |
+
|
21 |
+
hf_token: str
|
22 |
+
hf_username: str
|
23 |
+
transformers_version: str = "3.0.0"
|
24 |
+
hf_base_url: str = "https://huggingface.co"
|
25 |
+
transformers_base_url: str = (
|
26 |
+
"https://github.com/xenova/transformers.js/archive/refs"
|
27 |
+
)
|
28 |
+
repo_path: Path = Path("./transformers.js")
|
29 |
+
|
30 |
+
@classmethod
|
31 |
+
def from_env(cls) -> "Config":
|
32 |
+
"""Create config from environment variables and secrets."""
|
33 |
+
system_token = st.secrets.get("HF_TOKEN")
|
34 |
+
user_token = st.session_state.get("user_hf_token")
|
35 |
+
if user_token:
|
36 |
+
hf_username = whoami(token=user_token)["name"]
|
37 |
+
else:
|
38 |
+
hf_username = (
|
39 |
+
os.getenv("SPACE_AUTHOR_NAME") or whoami(token=system_token)["name"]
|
40 |
+
)
|
41 |
+
hf_token = user_token or system_token
|
42 |
+
|
43 |
+
if not hf_token:
|
44 |
+
raise ValueError("HF_TOKEN must be set")
|
45 |
+
|
46 |
+
return cls(hf_token=hf_token, hf_username=hf_username)
|
47 |
+
|
48 |
+
|
49 |
+
class ModelConverter:
|
50 |
+
"""Handles model conversion and upload operations."""
|
51 |
+
|
52 |
+
def __init__(self, config: Config):
|
53 |
+
self.config = config
|
54 |
+
self.api = HfApi(token=config.hf_token)
|
55 |
+
|
56 |
+
def _get_ref_type(self) -> str:
|
57 |
+
"""Determine the reference type for the transformers repository."""
|
58 |
+
url = f"{self.config.transformers_base_url}/tags/{self.config.transformers_version}.tar.gz"
|
59 |
+
try:
|
60 |
+
return "tags" if urlopen(url).getcode() == 200 else "heads"
|
61 |
+
except Exception as e:
|
62 |
+
logger.warning(f"Failed to check tags, defaulting to heads: {e}")
|
63 |
+
return "heads"
|
64 |
+
|
65 |
+
def setup_repository(self) -> None:
|
66 |
+
"""Download and setup transformers repository if needed."""
|
67 |
+
if self.config.repo_path.exists():
|
68 |
+
return
|
69 |
+
|
70 |
+
ref_type = self._get_ref_type()
|
71 |
+
archive_url = f"{self.config.transformers_base_url}/{ref_type}/{self.config.transformers_version}.tar.gz"
|
72 |
+
archive_path = Path(f"./transformers_{self.config.transformers_version}.tar.gz")
|
73 |
+
|
74 |
+
try:
|
75 |
+
urlretrieve(archive_url, archive_path)
|
76 |
+
self._extract_archive(archive_path)
|
77 |
+
logger.info("Repository downloaded and extracted successfully")
|
78 |
+
except Exception as e:
|
79 |
+
raise RuntimeError(f"Failed to setup repository: {e}")
|
80 |
+
finally:
|
81 |
+
archive_path.unlink(missing_ok=True)
|
82 |
+
|
83 |
+
def _extract_archive(self, archive_path: Path) -> None:
|
84 |
+
"""Extract the downloaded archive."""
|
85 |
+
import tarfile
|
86 |
+
import tempfile
|
87 |
+
|
88 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
89 |
+
with tarfile.open(archive_path, "r:gz") as tar:
|
90 |
+
tar.extractall(tmp_dir)
|
91 |
+
|
92 |
+
extracted_folder = next(Path(tmp_dir).iterdir())
|
93 |
+
extracted_folder.rename(self.config.repo_path)
|
94 |
+
|
95 |
+
def convert_model(self, input_model_id: str) -> Tuple[bool, Optional[str]]:
|
96 |
+
"""Convert the model to ONNX format."""
|
97 |
+
try:
|
98 |
+
result = subprocess.run(
|
99 |
+
[
|
100 |
+
sys.executable,
|
101 |
+
"-m",
|
102 |
+
"scripts.convert",
|
103 |
+
"--quantize",
|
104 |
+
"--model_id",
|
105 |
+
input_model_id,
|
106 |
+
],
|
107 |
+
cwd=self.config.repo_path,
|
108 |
+
capture_output=True,
|
109 |
+
text=True,
|
110 |
+
env={},
|
111 |
+
)
|
112 |
+
|
113 |
+
if result.returncode != 0:
|
114 |
+
return False, result.stderr
|
115 |
+
|
116 |
+
return True, result.stderr
|
117 |
+
|
118 |
+
except Exception as e:
|
119 |
+
return False, str(e)
|
120 |
+
|
121 |
+
def upload_model(self, input_model_id: str, output_model_id: str) -> Optional[str]:
|
122 |
+
"""Upload the converted model to Hugging Face."""
|
123 |
+
try:
|
124 |
+
self.api.create_repo(output_model_id, exist_ok=True, private=False)
|
125 |
+
model_folder_path = self.config.repo_path / "models" / input_model_id
|
126 |
+
|
127 |
+
self.api.upload_folder(
|
128 |
+
folder_path=str(model_folder_path), repo_id=output_model_id
|
129 |
+
)
|
130 |
+
return None
|
131 |
+
except Exception as e:
|
132 |
+
return str(e)
|
133 |
+
finally:
|
134 |
+
import shutil
|
135 |
+
|
136 |
+
shutil.rmtree(model_folder_path, ignore_errors=True)
|
137 |
+
|
138 |
+
|
139 |
+
def main():
|
140 |
+
"""Main application entry point."""
|
141 |
+
st.write("## Convert a Hugging Face model to ONNX")
|
142 |
+
|
143 |
+
try:
|
144 |
+
config = Config.from_env()
|
145 |
+
converter = ModelConverter(config)
|
146 |
+
converter.setup_repository()
|
147 |
+
|
148 |
+
input_model_id = st.text_input(
|
149 |
+
"Enter the Hugging Face model ID to convert. Example: `EleutherAI/pythia-14m`"
|
150 |
+
)
|
151 |
+
|
152 |
+
if not input_model_id:
|
153 |
+
return
|
154 |
+
|
155 |
+
st.text_input(
|
156 |
+
f"Optional: Your Hugging Face write token. Fill it if you want to upload the model under your account.",
|
157 |
+
type="password",
|
158 |
+
key="user_hf_token",
|
159 |
+
)
|
160 |
+
|
161 |
+
model_name = input_model_id.split("/")[-1]
|
162 |
+
output_model_id = f"{config.hf_username}/{model_name}-ONNX"
|
163 |
+
output_model_url = f"{config.hf_base_url}/{output_model_id}"
|
164 |
+
|
165 |
+
if converter.api.repo_exists(output_model_id):
|
166 |
+
st.write("This model has already been converted! 🎉")
|
167 |
+
st.link_button(f"Go to {output_model_id}", output_model_url, type="primary")
|
168 |
+
return
|
169 |
+
|
170 |
+
st.write(f"URL where the model will be converted and uploaded to:")
|
171 |
+
st.code(output_model_url, language="plaintext")
|
172 |
+
|
173 |
+
if not st.button(label="Proceed", type="primary"):
|
174 |
+
return
|
175 |
+
|
176 |
+
with st.spinner("Converting model..."):
|
177 |
+
success, stderr = converter.convert_model(input_model_id)
|
178 |
+
if not success:
|
179 |
+
st.error(f"Conversion failed: {stderr}")
|
180 |
+
return
|
181 |
+
|
182 |
+
st.success("Conversion successful!")
|
183 |
+
st.code(stderr)
|
184 |
+
|
185 |
+
with st.spinner("Uploading model..."):
|
186 |
+
error = converter.upload_model(input_model_id, output_model_id)
|
187 |
+
if error:
|
188 |
+
st.error(f"Upload failed: {error}")
|
189 |
+
return
|
190 |
+
|
191 |
+
st.success("Upload successful!")
|
192 |
+
st.write("You can now go and view the model on Hugging Face!")
|
193 |
+
st.link_button(f"Go to {output_model_id}", output_model_url, type="primary")
|
194 |
+
|
195 |
+
except Exception as e:
|
196 |
+
logger.exception("Application error")
|
197 |
+
st.error(f"An error occurred: {str(e)}")
|
198 |
+
|
199 |
+
|
200 |
+
if __name__ == "__main__":
|
201 |
+
main()
|
requirements.txt
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
huggingface_hub
|
2 |
+
streamlit
|
3 |
+
transformers[torch]==4.43.4
|
4 |
+
onnxruntime==1.19.2
|
5 |
+
optimum==1.21.3
|
6 |
+
onnx==1.16.2
|
7 |
+
onnxconverter-common==1.14.0
|
8 |
+
tqdm==4.66.5
|
9 |
+
onnxslim==0.1.31
|
10 |
+
--extra-index-url https://pypi.ngc.nvidia.com
|
11 |
+
onnx_graphsurgeon==0.3.27
|
12 |
+
timm
|
run.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
pip install -r requirements.txt
|
3 |
+
streamlit run app.py
|