zzl
commited on
Commit
·
4fa279e
1
Parent(s):
2bbc3ee
release
Browse files- demo_img.py +7 -6
- demo_vid.py +6 -6
demo_img.py
CHANGED
@@ -28,17 +28,18 @@ def img2vid(model_type, img0, img1, frame_ratio, iters):
|
|
28 |
img1_t = img2tensor(img1).to(device)
|
29 |
inputs = [img0_t, img1_t]
|
30 |
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
# Do not resize in cpu mode
|
33 |
anchor_resolution = 8192*8192
|
34 |
anchor_memory = 1
|
35 |
anchor_memory_bias = 0
|
36 |
vram_avail = 1
|
37 |
-
elif device == 'cuda':
|
38 |
-
anchor_resolution = 1024 * 512
|
39 |
-
anchor_memory = 1500 * 1024**2
|
40 |
-
anchor_memory_bias = 2500 * 1024**2
|
41 |
-
vram_avail = torch.cuda.get_device_properties(device).total_memory
|
42 |
embt = torch.tensor(1/2).float().view(1, 1, 1, 1).to(device)
|
43 |
|
44 |
inputs = check_dim_and_resize(inputs)
|
|
|
28 |
img1_t = img2tensor(img1).to(device)
|
29 |
inputs = [img0_t, img1_t]
|
30 |
|
31 |
+
|
32 |
+
if device == 'cuda':
|
33 |
+
anchor_resolution = 1024 * 512
|
34 |
+
anchor_memory = 1500 * 1024**2
|
35 |
+
anchor_memory_bias = 2500 * 1024**2
|
36 |
+
vram_avail = torch.cuda.get_device_properties(device).total_memory
|
37 |
+
else':
|
38 |
# Do not resize in cpu mode
|
39 |
anchor_resolution = 8192*8192
|
40 |
anchor_memory = 1
|
41 |
anchor_memory_bias = 0
|
42 |
vram_avail = 1
|
|
|
|
|
|
|
|
|
|
|
43 |
embt = torch.tensor(1/2).float().view(1, 1, 1, 1).to(device)
|
44 |
|
45 |
inputs = check_dim_and_resize(inputs)
|
demo_vid.py
CHANGED
@@ -27,17 +27,17 @@ def vid2vid(model_type, video, iters):
|
|
27 |
inputs = []
|
28 |
h = int(vcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
29 |
w = int(vcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
30 |
-
if device == '
|
|
|
|
|
|
|
|
|
|
|
31 |
# Do not resize in cpu mode
|
32 |
anchor_resolution = 8192*8192
|
33 |
anchor_memory = 1
|
34 |
anchor_memory_bias = 0
|
35 |
vram_avail = 1
|
36 |
-
elif device == 'cuda':
|
37 |
-
anchor_resolution = 1024 * 512
|
38 |
-
anchor_memory = 1500 * 1024**2
|
39 |
-
anchor_memory_bias = 2500 * 1024**2
|
40 |
-
vram_avail = torch.cuda.get_device_properties(device).total_memory
|
41 |
|
42 |
scale = anchor_resolution / (h * w) * np.sqrt((vram_avail - anchor_memory_bias) / anchor_memory)
|
43 |
scale = 1 if scale > 1 else scale
|
|
|
27 |
inputs = []
|
28 |
h = int(vcap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
29 |
w = int(vcap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
30 |
+
if device == 'cuda':
|
31 |
+
anchor_resolution = 1024 * 512
|
32 |
+
anchor_memory = 1500 * 1024**2
|
33 |
+
anchor_memory_bias = 2500 * 1024**2
|
34 |
+
vram_avail = torch.cuda.get_device_properties(device).total_memory
|
35 |
+
else':
|
36 |
# Do not resize in cpu mode
|
37 |
anchor_resolution = 8192*8192
|
38 |
anchor_memory = 1
|
39 |
anchor_memory_bias = 0
|
40 |
vram_avail = 1
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
scale = anchor_resolution / (h * w) * np.sqrt((vram_avail - anchor_memory_bias) / anchor_memory)
|
43 |
scale = 1 if scale > 1 else scale
|