import gradio as gr import numpy as np import tensorflow as tf import logging from PIL import Image from tensorflow.keras.preprocessing import image as keras_image from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input as resnet_preprocess from tensorflow.keras.applications.vgg16 import VGG16, preprocess_input as vgg_preprocess import scipy.fftpack import time import clip import torch # Set up logging logging.basicConfig(level=logging.INFO) # Load models resnet_model = ResNet50(weights='imagenet', include_top=False, pooling='avg') vgg_model = VGG16(weights='imagenet', include_top=False, pooling='avg') clip_model, preprocess_clip = clip.load("ViT-B/32", device="cpu") # Preprocess function def preprocess_img(img_path, target_size=(224, 224), preprocess_func=resnet_preprocess): start_time = time.time() img = keras_image.load_img(img_path, target_size=target_size) img_array = keras_image.img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_func(img_array) logging.info(f"Image preprocessed in {time.time() - start_time:.4f} seconds") return img_array # Feature extraction function def extract_features(img_path, model, preprocess_func): img_array = preprocess_img(img_path, preprocess_func=preprocess_func) start_time = time.time() features = model.predict(img_array) logging.info(f"Features extracted in {time.time() - start_time:.4f} seconds") return features.flatten() # Calculate cosine similarity def cosine_similarity(vec1, vec2): return np.dot(vec1, vec2) / (np.linalg.norm(vec1) * np.linalg.norm(vec2)) # pHash related functions def phashstr(image, hash_size=8, highfreq_factor=4): img_size = hash_size * highfreq_factor image = image.convert('L').resize((img_size, img_size), Image.Resampling.LANCZOS) pixels = np.asarray(image) dct = scipy.fftpack.dct(scipy.fftpack.dct(pixels, axis=0), axis=1) dctlowfreq = dct[:hash_size, :hash_size] med = np.median(dctlowfreq) diff = dctlowfreq > med return _binary_array_to_hex(diff.flatten()) def _binary_array_to_hex(arr): h = 0 s = [] for i, v in enumerate(arr): if v: h += 2**(i % 8) if (i % 8) == 7: s.append(hex(h)[2:].rjust(2, '0')) h = 0 return ''.join(s) def hamming_distance(hash1, hash2): if len(hash1) != len(hash2): raise ValueError("Hashes must be of the same length") return sum(c1 != c2 for c1, c2 in zip(hash1, hash2)) def hamming_to_similarity(distance, hash_length): return (1 - distance / hash_length) * 100 # CLIP related functions def extract_clip_features(image_path, model, preprocess): image = preprocess(Image.open(image_path)).unsqueeze(0).to("cpu") with torch.no_grad(): features = model.encode_image(image) return features.cpu().numpy().flatten() # Main function def compare_images(image1, image2, method): similarity = None start_time = time.time() if method == 'pHash': img1 = Image.open(image1) img2 = Image.open(image2) hash1 = phashstr(img1) hash2 = phashstr(img2) distance = hamming_distance(hash1, hash2) similarity = hamming_to_similarity(distance, len(hash1) * 4) elif method == 'ResNet50': features1 = extract_features(image1, resnet_model, resnet_preprocess) features2 = extract_features(image2, resnet_model, resnet_preprocess) similarity = cosine_similarity(features1, features2) elif method == 'VGG16': features1 = extract_features(image1, vgg_model, vgg_preprocess) features2 = extract_features(image2, vgg_model, vgg_preprocess) similarity = cosine_similarity(features1, features2) elif method == 'CLIP': features1 = extract_clip_features(image1, clip_model, preprocess_clip) features2 = extract_clip_features(image2, clip_model, preprocess_clip) similarity = cosine_similarity(features1, features2) logging.info(f"AI based Supporting Documents comparison using {method} completed in {time.time() - start_time:.4f} seconds") # Return similarity with HTML formatting for bold and colorful text return f"Similarity Score: {similarity:.2f}%" # Gradio interface demo = gr.Interface( fn=compare_images, inputs=[ gr.Image(type="filepath", label="Upload First Image"), gr.Image(type="filepath", label="Upload Second Image"), gr.Radio(["pHash", "ResNet50", "VGG16", "CLIP"], label="Select Comparison Method") ], outputs=gr.HTML(label="Similarity"), # Use HTML for bold and colorful text title="AI Based Customs Supporting Documents Comparison", description=( "Upload two images of supporting documents and select the comparison method.\n" "Fraud documents like invoices are used by custom brokers with the same templates. " "This tool helps identify similar document templates used in two different consignments.\n" "Developed by NCTC." ), examples=[ ["Snipaste_2024-05-31_16-18-31.jpg", "Snipaste_2024-05-31_16-18-52.jpg"], ["example1.png", "example2.png"] ] ) demo.launch()