import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import plotly.express as px num_rows = 50 df = pd.read_csv('emails_cleaned.csv', on_bad_lines='skip', nrows=num_rows) def get_message(Series: pd.Series): result = pd.Series(index=Series.index) for row, message in enumerate(Series): message_words = message.split('\n') del message_words[:15] result.iloc[row] = ''.join(message_words).strip() return result def get_date(Series: pd.Series): result = pd.Series(index=Series.index) for row, message in enumerate(Series): message_words = message.split('\n') del message_words[0] del message_words[1:] result.iloc[row] = ''.join(message_words).strip() result.iloc[row] = result.iloc[row].replace('Date: ', '') print('Done parsing, converting to datetime format..') return pd.to_datetime(result) def get_sender_and_receiver(Series: pd.Series): sender = pd.Series(index = Series.index) recipient1 = pd.Series(index = Series.index) recipient2 = pd.Series(index = Series.index) recipient3 = pd.Series(index = Series.index) for row,message in enumerate(Series): message_words = message.split('\n') sender[row] = message_words[2].replace('From: ', '') recipient1[row] = message_words[3].replace('To: ', '') recipient2[row] = message_words[10].replace('X-cc: ', '') recipient3[row] = message_words[11].replace('X-bcc: ', '') return sender, recipient1, recipient2, recipient3 def get_subject(Series: pd.Series): result = pd.Series(index = Series.index) for row, message in enumerate(Series): message_words = message.split('\n') message_words = message_words[4] result[row] = message_words.replace('Subject: ', '') return result def get_folder(Series: pd.Series): result = pd.Series(index = Series.index) for row, message in enumerate(Series): message_words = message.split('\n') message_words = message_words[12] result[row] = message_words.replace('X-Folder: ', '') return result df['text'] = get_message(df.message) df['sender'], df['recipient1'], df['recipient2'], df['recipient3'] = get_sender_and_receiver(df.message) df['Subject'] = get_subject(df.message) df['folder'] = get_folder(df.message) df['date'] = get_date(df.message) df = df.drop(['message', 'file'], axis = 1) import chromadb chroma_client = chromadb.Client() from chromadb.utils import embedding_functions sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(model_name="paraphrase-MiniLM-L3-v2") collection_minilm = chroma_client.create_collection(name="emails_minilm", embedding_function=sentence_transformer_ef) for i in df.index: print(i) collection_minilm.add( documents = df.loc[i, 'text'], metadatas = [{"sender": df.loc[i, 'sender'], "recipient1": df.loc[i, 'recipient1'], "recipient2": df.loc[i, 'recipient2'], "recipient3": df.loc[i, 'recipient3'], "subject": df.loc[i, 'Subject'], "folder": df.loc[i, 'folder'], "date": str(df.loc[i, 'date']) }], ids = str(i) ) results = collection_minilm.query( query_texts = ["this is a document"], n_results = 2, include = ['distances', 'metadatas', 'documents'] ) results import gradio as gr import ast def create_output(dictionary, number): dictionary_ids = str(dictionary['ids']) dictionary_ids_clean = dictionary_ids.strip("[]") dictionary_ids_clean = dictionary_ids_clean.replace("'", "") dictionary_ids_list = dictionary_ids_clean.split(", ") string_results = ""; for n in range(number): t = collection_minilm.get( ids=[dictionary_ids_list[n]] ) id = str(t["ids"]) doc = str(t["documents"]) metadata = str(t["metadatas"]) dictionary_metadata = ast.literal_eval(metadata.strip("[]")) string_results_old = string_results string_temp = """--------------- SUBJECT: """ + dictionary_metadata['subject'] + """" MESSAGE: """ + "\n" + doc + """ ---------------""" string_results = string_results_old + string_temp return string_results def query_chromadb_advanced(question,numberOfResults): results = collection_minilm.query( query_texts = question, n_results = numberOfResults, ) return create_output(results, numberOfResults) result_advance = query_chromadb_advanced("bank", 4) iface = gr.Interface( fn=query_chromadb_advanced, inputs=["text","number"], outputs="text", title="Email Dataset Interface", description="Insert the question or the key word to find the topic correlated in the dataset" ) iface.launch(share=True)