File size: 39,134 Bytes
f9bd6e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<a href=\"https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/agentchat_web_info.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {
    "slideshow": {
     "slide_type": "slide"
    }
   },
   "source": [
    "# Auto Generated Agent Chat: Solving Tasks Requiring Web Info\n",
    "\n",
    "AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framwork allows tool use and human participance through multi-agent conversation.\n",
    "Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n",
    "\n",
    "In this notebook, we demonstrate how to use `AssistantAgent` and `UserProxyAgent` to perform tasks which require acquiring info from the web:\n",
    "* discuss a paper based on its URL.\n",
    "* discuss about stock market.\n",
    "\n",
    "Here `AssistantAgent` is an LLM-based agent that can write Python code (in a Python coding block) for a user to execute for a given task. `UserProxyAgent` is an agent which serves as a proxy for a user to execute the code written by `AssistantAgent`. By setting `human_input_mode` properly, the `UserProxyAgent` can also prompt the user for feedback to `AssistantAgent`. For example, when `human_input_mode` is set to \"TERMINATE\", the `UserProxyAgent` will execute the code written by `AssistantAgent` directly and return the execution results (success or failure and corresponding outputs) to `AssistantAgent`, and prompt the user for feedback when the task is finished. When user feedback is provided, the `UserProxyAgent` will directly pass the feedback to `AssistantAgent`.\n",
    "\n",
    "## Requirements\n",
    "\n",
    "AutoGen requires `Python>=3.8`. To run this notebook example, please install pyautogen and docker:\n",
    "```bash\n",
    "pip install pyautogen docker\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "execution": {
     "iopub.execute_input": "2023-02-13T23:40:52.317406Z",
     "iopub.status.busy": "2023-02-13T23:40:52.316561Z",
     "iopub.status.idle": "2023-02-13T23:40:52.321193Z",
     "shell.execute_reply": "2023-02-13T23:40:52.320628Z"
    }
   },
   "outputs": [],
   "source": [
    "# %pip install pyautogen~=0.1.0 docker"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Set your API Endpoint\n",
    "\n",
    "The [`config_list_from_json`](https://microsoft.github.io/autogen/docs/reference/oai/openai_utils#config_list_from_json) function loads a list of configurations from an environment variable or a json file.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "import autogen\n",
    "\n",
    "config_list = autogen.config_list_from_json(\n",
    "    \"OAI_CONFIG_LIST\",\n",
    "    filter_dict={\n",
    "        \"model\": [\"gpt4\", \"gpt-4-32k\", \"gpt-4-32k-0314\", \"gpt-4-32k-v0314\"],\n",
    "    },\n",
    ")\n",
    "\n",
    "llm_config={\n",
    "    \"request_timeout\": 600,\n",
    "    \"seed\": 42,\n",
    "    \"config_list\": config_list,\n",
    "    \"temperature\": 0,\n",
    "}"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by models (you can filter by other keys as well). Only the models with matching names are kept in the list based on the filter condition.\n",
    "\n",
    "The config list looks like the following:\n",
    "```python\n",
    "config_list = [\n",
    "    {\n",
    "        'model': 'gpt-4-32k',\n",
    "        'api_key': '<your OpenAI API key here>',\n",
    "    },\n",
    "    {\n",
    "        'model': 'gpt4',\n",
    "        'api_key': '<your Azure OpenAI API key here>',\n",
    "        'api_base': '<your Azure OpenAI API base here>',\n",
    "        'api_type': 'azure',\n",
    "        'api_version': '2023-06-01-preview',\n",
    "    },\n",
    "    {\n",
    "        'model': 'gpt-4-32k-0314',\n",
    "        'api_key': '<your Azure OpenAI API key here>',\n",
    "        'api_base': '<your Azure OpenAI API base here>',\n",
    "        'api_type': 'azure',\n",
    "        'api_version': '2023-06-01-preview',\n",
    "    },\n",
    "]\n",
    "```\n",
    "\n",
    "If you open this notebook in colab, you can upload your files by clicking the file icon on the left panel and then choose \"upload file\" icon.\n",
    "\n",
    "You can set the value of config_list in other ways you prefer, e.g., loading from a YAML file."
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Construct Agents\n",
    "\n",
    "We construct the assistant agent and the user proxy agent. We specify `human_input_mode` as \"TERMINATE\" in the user proxy agent, which will ask for human feedback when it receives a \"TERMINATE\" signal from the assistant agent."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# create an AssistantAgent instance named \"assistant\"\n",
    "assistant = autogen.AssistantAgent(\n",
    "    name=\"assistant\",\n",
    "    llm_config=llm_config,\n",
    ")\n",
    "# create a UserProxyAgent instance named \"user_proxy\"\n",
    "user_proxy = autogen.UserProxyAgent(\n",
    "    name=\"user_proxy\",\n",
    "    human_input_mode=\"TERMINATE\",\n",
    "    max_consecutive_auto_reply=10,\n",
    "    is_termination_msg=lambda x: x.get(\"content\", \"\").rstrip().endswith(\"TERMINATE\"),\n",
    "    code_execution_config={\"work_dir\": \"web\"},\n",
    "    llm_config=llm_config,\n",
    "    system_message=\"\"\"Reply TERMINATE if the task has been solved at full satisfaction.\n",
    "Otherwise, reply CONTINUE, or the reason why the task is not solved yet.\"\"\"\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example Task: Paper Talk from URL\n",
    "\n",
    "We invoke the `initiate_chat()` method of the user proxy agent to start the conversation. When you run the cell below, you will be prompted to provide feedback after the assistant agent sends a \"TERMINATE\" signal in the end of the message. If you don't provide any feedback (by pressing Enter directly), the conversation will finish. Before the \"TERMINATE\" signal, the user proxy agent will try to execute the code suggested by the assistant agent on behalf of the user."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33muser_proxy\u001b[0m (to assistant):\n",
      "\n",
      "\n",
      "Who should read this paper: https://arxiv.org/abs/2306.01337\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant\u001b[0m (to user_proxy):\n",
      "\n",
      "To determine who should read the paper, we need to first understand the content and context of the paper. We can do this by fetching the abstract of the paper from the provided URL and analyzing it. \n",
      "\n",
      "Here is a Python script that uses the BeautifulSoup library to scrape the abstract of the paper from the webpage. \n",
      "\n",
      "```python\n",
      "# Python script to scrape the abstract of the paper\n",
      "\n",
      "import requests\n",
      "from bs4 import BeautifulSoup\n",
      "\n",
      "def get_abstract(url):\n",
      "    response = requests.get(url)\n",
      "    soup = BeautifulSoup(response.text, 'html.parser')\n",
      "    abstract = soup.find('blockquote', attrs={'class': 'abstract mathjax'}).text.strip()\n",
      "    return abstract\n",
      "\n",
      "url = \"https://arxiv.org/abs/2306.01337\"\n",
      "abstract = get_abstract(url)\n",
      "print(abstract)\n",
      "```\n",
      "\n",
      "Please run this script and provide the output. Based on the abstract, I can suggest who might be interested in reading this paper.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
      "\u001b[33muser_proxy\u001b[0m (to assistant):\n",
      "\n",
      "exitcode: 0 (execution succeeded)\n",
      "Code output: \n",
      "Abstract:  Employing Large Language Models (LLMs) to address mathematical problems is an\n",
      "intriguing research endeavor, considering the abundance of math problems\n",
      "expressed in natural language across numerous science and engineering fields.\n",
      "While several prior works have investigated solving elementary mathematics\n",
      "using LLMs, this work explores the frontier of using GPT-4 for solving more\n",
      "complex and challenging math problems. We evaluate various ways of using GPT-4.\n",
      "Some of them are adapted from existing work, and one is MathChat, a\n",
      "conversational problem-solving framework newly proposed in this work. We\n",
      "perform the evaluation on difficult high school competition problems from the\n",
      "MATH dataset, which shows the advantage of the proposed conversational\n",
      "approach.\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant\u001b[0m (to user_proxy):\n",
      "\n",
      "Based on the abstract, the paper is about using Large Language Models (LLMs), specifically GPT-4, to solve complex mathematical problems. The paper introduces a new conversational problem-solving framework called MathChat and evaluates its performance on difficult high school competition problems from the MATH dataset.\n",
      "\n",
      "Given this, the paper would be of interest to the following groups:\n",
      "\n",
      "1. **Researchers in Artificial Intelligence and Natural Language Processing**: The paper discusses the use of a large language model (GPT-4) for problem-solving, which is a key research area in AI and NLP.\n",
      "\n",
      "2. **Mathematicians and Math Educators**: The paper focuses on solving complex mathematical problems, so those with a background in mathematics might find the techniques and results interesting.\n",
      "\n",
      "3. **Data Scientists and Machine Learning Engineers**: These professionals often use models like GPT-4 in their work and might be interested in new applications and techniques.\n",
      "\n",
      "4. **Students studying AI, NLP, or Mathematics**: The paper could provide valuable insights for these students into how AI can be used in problem-solving.\n",
      "\n",
      "5. **Developers working on AI-based chatbots or conversational agents**: The paper introduces a new conversational problem-solving framework, which could be of interest to these developers.\n",
      "\n",
      "Please note that while the paper is likely to be of interest to these groups, the specific relevance will depend on the individual's specific interests and research needs.\n",
      "\n",
      "TERMINATE\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "# the assistant receives a message from the user, which contains the task description\n",
    "user_proxy.initiate_chat(\n",
    "    assistant,\n",
    "    message=\"\"\"\n",
    "Who should read this paper: https://arxiv.org/abs/2308.08155\n",
    "\"\"\",\n",
    ")"
   ]
  },
  {
   "attachments": {},
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Example Task: Chat about Stock Market"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\u001b[33muser_proxy\u001b[0m (to assistant):\n",
      "\n",
      "Show me the YTD gain of 10 largest technology companies as of today.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant\u001b[0m (to user_proxy):\n",
      "\n",
      "To get the YTD gain of the 10 largest technology companies, we need to do the following:\n",
      "\n",
      "1. Identify the 10 largest technology companies. We can use the list of the largest technology companies by market capitalization. This list can change frequently, so we need to get the latest data. We can use web scraping to get this data from a reliable source.\n",
      "\n",
      "2. Get the YTD gain for each of these companies. We can use a financial data API to get this data. Yahoo Finance is a popular source for this kind of data.\n",
      "\n",
      "Here is a Python script that uses the BeautifulSoup library for web scraping and the yfinance library to get data from Yahoo Finance. This script will print the 10 largest technology companies and their YTD gains.\n",
      "\n",
      "```python\n",
      "# filename: ytd_gain.py\n",
      "\n",
      "import requests\n",
      "from bs4 import BeautifulSoup\n",
      "import yfinance as yf\n",
      "import pandas as pd\n",
      "\n",
      "# Get the list of largest tech companies by market cap\n",
      "url = \"https://companiesmarketcap.com/technology/largest-technology-companies-by-market-cap/\"\n",
      "response = requests.get(url)\n",
      "soup = BeautifulSoup(response.text, 'html.parser')\n",
      "\n",
      "# Find the table with the data\n",
      "table = soup.find('table')\n",
      "\n",
      "# Get the ticker symbols of the 10 largest companies\n",
      "tickers = []\n",
      "for row in table.find_all('tr')[1:11]:  # Skip the header row\n",
      "    ticker = row.find_all('td')[1].text\n",
      "    tickers.append(ticker)\n",
      "\n",
      "# Get the YTD gain for each company\n",
      "ytd_gains = {}\n",
      "for ticker in tickers:\n",
      "    ticker_data = yf.Ticker(ticker)\n",
      "    hist = ticker_data.history(period=\"ytd\")\n",
      "    start_price = hist.iloc[0]['Close']\n",
      "    end_price = hist.iloc[-1]['Close']\n",
      "    ytd_gain = (end_price - start_price) / start_price * 100\n",
      "    ytd_gains[ticker] = ytd_gain\n",
      "\n",
      "# Print the results\n",
      "for ticker, ytd_gain in ytd_gains.items():\n",
      "    print(f\"{ticker}: {ytd_gain:.2f}%\")\n",
      "```\n",
      "\n",
      "To run this script, save it to a file named `ytd_gain.py`, then run it with the command `python ytd_gain.py`.\n",
      "\n",
      "Please note that this script requires the BeautifulSoup, requests, yfinance, and pandas libraries. If you don't have these libraries installed, you can install them with the command `pip install beautifulsoup4 requests yfinance pandas`.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
      "\u001b[33muser_proxy\u001b[0m (to assistant):\n",
      "\n",
      "exitcode: 1 (execution failed)\n",
      "Code output: \n",
      "Traceback (most recent call last):\n",
      "  File \"ytd_gain.py\", line 18, in <module>\n",
      "    for row in table.find_all('tr')[1:11]:  # Skip the header row\n",
      "AttributeError: 'NoneType' object has no attribute 'find_all'\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant\u001b[0m (to user_proxy):\n",
      "\n",
      "I apologize for the error. It seems that the script failed to find the table in the webpage. This could be due to changes in the webpage structure or because the page uses JavaScript to load the table, which BeautifulSoup can't handle.\n",
      "\n",
      "Let's try a different approach. We'll use the yfinance library to get the data for the 10 largest technology companies. These are currently: Apple (AAPL), Microsoft (MSFT), Alphabet (GOOGL), Amazon (AMZN), Facebook (FB), Tesla (TSLA), Nvidia (NVDA), Paypal (PYPL), Adobe (ADBE), and Netflix (NFLX).\n",
      "\n",
      "Here's the updated Python script:\n",
      "\n",
      "```python\n",
      "# filename: ytd_gain.py\n",
      "\n",
      "import yfinance as yf\n",
      "\n",
      "# List of the 10 largest tech companies by market cap\n",
      "tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'FB', 'TSLA', 'NVDA', 'PYPL', 'ADBE', 'NFLX']\n",
      "\n",
      "# Get the YTD gain for each company\n",
      "ytd_gains = {}\n",
      "for ticker in tickers:\n",
      "    ticker_data = yf.Ticker(ticker)\n",
      "    hist = ticker_data.history(period=\"ytd\")\n",
      "    start_price = hist.iloc[0]['Close']\n",
      "    end_price = hist.iloc[-1]['Close']\n",
      "    ytd_gain = (end_price - start_price) / start_price * 100\n",
      "    ytd_gains[ticker] = ytd_gain\n",
      "\n",
      "# Print the results\n",
      "for ticker, ytd_gain in ytd_gains.items():\n",
      "    print(f\"{ticker}: {ytd_gain:.2f}%\")\n",
      "```\n",
      "\n",
      "To run this script, save it to a file named `ytd_gain.py`, then run it with the command `python ytd_gain.py`.\n",
      "\n",
      "Please note that this script requires the yfinance library. If you don't have this library installed, you can install it with the command `pip install yfinance`.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
      "\u001b[33muser_proxy\u001b[0m (to assistant):\n",
      "\n",
      "exitcode: 1 (execution failed)\n",
      "Code output: \n",
      "FB: No data found, symbol may be delisted\n",
      "Traceback (most recent call last):\n",
      "  File \"ytd_gain.py\", line 13, in <module>\n",
      "    start_price = hist.iloc[0]['Close']\n",
      "  File \"/home/vscode/.local/lib/python3.9/site-packages/pandas/core/indexing.py\", line 931, in __getitem__\n",
      "    return self._getitem_axis(maybe_callable, axis=axis)\n",
      "  File \"/home/vscode/.local/lib/python3.9/site-packages/pandas/core/indexing.py\", line 1566, in _getitem_axis\n",
      "    self._validate_integer(key, axis)\n",
      "  File \"/home/vscode/.local/lib/python3.9/site-packages/pandas/core/indexing.py\", line 1500, in _validate_integer\n",
      "    raise IndexError(\"single positional indexer is out-of-bounds\")\n",
      "IndexError: single positional indexer is out-of-bounds\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant\u001b[0m (to user_proxy):\n",
      "\n",
      "I apologize for the error. It seems that the script failed to get the data for Facebook (FB). This could be due to a temporary issue with the Yahoo Finance API.\n",
      "\n",
      "Let's modify the script to handle this situation. We'll add a try-except block to skip any companies for which we can't get data.\n",
      "\n",
      "Here's the updated Python script:\n",
      "\n",
      "```python\n",
      "# filename: ytd_gain.py\n",
      "\n",
      "import yfinance as yf\n",
      "\n",
      "# List of the 10 largest tech companies by market cap\n",
      "tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'FB', 'TSLA', 'NVDA', 'PYPL', 'ADBE', 'NFLX']\n",
      "\n",
      "# Get the YTD gain for each company\n",
      "ytd_gains = {}\n",
      "for ticker in tickers:\n",
      "    try:\n",
      "        ticker_data = yf.Ticker(ticker)\n",
      "        hist = ticker_data.history(period=\"ytd\")\n",
      "        start_price = hist.iloc[0]['Close']\n",
      "        end_price = hist.iloc[-1]['Close']\n",
      "        ytd_gain = (end_price - start_price) / start_price * 100\n",
      "        ytd_gains[ticker] = ytd_gain\n",
      "    except IndexError:\n",
      "        print(f\"Could not get data for {ticker}\")\n",
      "\n",
      "# Print the results\n",
      "for ticker, ytd_gain in ytd_gains.items():\n",
      "    print(f\"{ticker}: {ytd_gain:.2f}%\")\n",
      "```\n",
      "\n",
      "To run this script, save it to a file named `ytd_gain.py`, then run it with the command `python ytd_gain.py`.\n",
      "\n",
      "Please note that this script requires the yfinance library. If you don't have this library installed, you can install it with the command `pip install yfinance`.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
      "\u001b[33muser_proxy\u001b[0m (to assistant):\n",
      "\n",
      "exitcode: 0 (execution succeeded)\n",
      "Code output: \n",
      "Could not get data for FB\n",
      "AAPL: 46.41%\n",
      "MSFT: 37.63%\n",
      "GOOGL: 51.13%\n",
      "AMZN: 56.22%\n",
      "TSLA: 131.46%\n",
      "NVDA: 237.68%\n",
      "PYPL: -16.49%\n",
      "ADBE: 59.79%\n",
      "NFLX: 43.41%\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant\u001b[0m (to user_proxy):\n",
      "\n",
      "The script has successfully fetched the Year-to-Date (YTD) gain for the largest technology companies, except for Facebook (FB). The YTD gains are as follows:\n",
      "\n",
      "- Apple (AAPL): 46.41%\n",
      "- Microsoft (MSFT): 37.63%\n",
      "- Alphabet (GOOGL): 51.13%\n",
      "- Amazon (AMZN): 56.22%\n",
      "- Tesla (TSLA): 131.46%\n",
      "- Nvidia (NVDA): 237.68%\n",
      "- Paypal (PYPL): -16.49%\n",
      "- Adobe (ADBE): 59.79%\n",
      "- Netflix (NFLX): 43.41%\n",
      "\n",
      "Unfortunately, the script could not fetch the data for Facebook (FB). This could be due to a temporary issue with the Yahoo Finance API or the ticker symbol might have changed.\n",
      "\n",
      "Please note that these values are subject to change as the stock market fluctuates. \n",
      "\n",
      "TERMINATE\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33muser_proxy\u001b[0m (to assistant):\n",
      "\n",
      "FB -> META\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant\u001b[0m (to user_proxy):\n",
      "\n",
      "Thank you for the update. Facebook Inc. has indeed rebranded to Meta Platforms Inc. and its ticker symbol has changed from FB to META on the NASDAQ stock exchange.\n",
      "\n",
      "Let's update the script to reflect this change:\n",
      "\n",
      "```python\n",
      "# filename: ytd_gain.py\n",
      "\n",
      "import yfinance as yf\n",
      "\n",
      "# List of the 10 largest tech companies by market cap\n",
      "# Updated Facebook (FB) to Meta Platforms (META)\n",
      "tickers = ['AAPL', 'MSFT', 'GOOGL', 'AMZN', 'META', 'TSLA', 'NVDA', 'PYPL', 'ADBE', 'NFLX']\n",
      "\n",
      "# Get the YTD gain for each company\n",
      "ytd_gains = {}\n",
      "for ticker in tickers:\n",
      "    try:\n",
      "        ticker_data = yf.Ticker(ticker)\n",
      "        hist = ticker_data.history(period=\"ytd\")\n",
      "        start_price = hist.iloc[0]['Close']\n",
      "        end_price = hist.iloc[-1]['Close']\n",
      "        ytd_gain = (end_price - start_price) / start_price * 100\n",
      "        ytd_gains[ticker] = ytd_gain\n",
      "    except IndexError:\n",
      "        print(f\"Could not get data for {ticker}\")\n",
      "\n",
      "# Print the results\n",
      "for ticker, ytd_gain in ytd_gains.items():\n",
      "    print(f\"{ticker}: {ytd_gain:.2f}%\")\n",
      "```\n",
      "\n",
      "To run this script, save it to a file named `ytd_gain.py`, then run it with the command `python ytd_gain.py`.\n",
      "\n",
      "Please note that this script requires the yfinance library. If you don't have this library installed, you can install it with the command `pip install yfinance`.\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> USING AUTO REPLY...\u001b[0m\n",
      "\u001b[31m\n",
      ">>>>>>>> EXECUTING CODE BLOCK 0 (inferred language is python)...\u001b[0m\n",
      "\u001b[33muser_proxy\u001b[0m (to assistant):\n",
      "\n",
      "exitcode: 0 (execution succeeded)\n",
      "Code output: \n",
      "AAPL: 46.34%\n",
      "MSFT: 37.55%\n",
      "GOOGL: 51.08%\n",
      "AMZN: 56.17%\n",
      "META: 133.67%\n",
      "TSLA: 131.02%\n",
      "NVDA: 237.38%\n",
      "PYPL: -16.55%\n",
      "ADBE: 59.71%\n",
      "NFLX: 43.44%\n",
      "\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[33massistant\u001b[0m (to user_proxy):\n",
      "\n",
      "The script has successfully fetched the Year-to-Date (YTD) gain for the largest technology companies, including Meta Platforms (formerly Facebook). The YTD gains are as follows:\n",
      "\n",
      "- Apple (AAPL): 46.34%\n",
      "- Microsoft (MSFT): 37.55%\n",
      "- Alphabet (GOOGL): 51.08%\n",
      "- Amazon (AMZN): 56.17%\n",
      "- Meta Platforms (META): 133.67%\n",
      "- Tesla (TSLA): 131.02%\n",
      "- Nvidia (NVDA): 237.38%\n",
      "- Paypal (PYPL): -16.55%\n",
      "- Adobe (ADBE): 59.71%\n",
      "- Netflix (NFLX): 43.44%\n",
      "\n",
      "Please note that these values are subject to change as the stock market fluctuates. \n",
      "\n",
      "TERMINATE\n",
      "\n",
      "--------------------------------------------------------------------------------\n",
      "\u001b[31m\n",
      ">>>>>>>> NO HUMAN INPUT RECEIVED.\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "user_proxy.initiate_chat(\n",
    "    assistant,\n",
    "    message=\"\"\"Show me the YTD gain of 10 largest technology companies as of today.\"\"\",\n",
    ")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.17"
  },
  "vscode": {
   "interpreter": {
    "hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
   }
  },
  "widgets": {
   "application/vnd.jupyter.widget-state+json": {
    "state": {
     "2d910cfd2d2a4fc49fc30fbbdc5576a7": {
      "model_module": "@jupyter-widgets/base",
      "model_module_version": "2.0.0",
      "model_name": "LayoutModel",
      "state": {
       "_model_module": "@jupyter-widgets/base",
       "_model_module_version": "2.0.0",
       "_model_name": "LayoutModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "LayoutView",
       "align_content": null,
       "align_items": null,
       "align_self": null,
       "border_bottom": null,
       "border_left": null,
       "border_right": null,
       "border_top": null,
       "bottom": null,
       "display": null,
       "flex": null,
       "flex_flow": null,
       "grid_area": null,
       "grid_auto_columns": null,
       "grid_auto_flow": null,
       "grid_auto_rows": null,
       "grid_column": null,
       "grid_gap": null,
       "grid_row": null,
       "grid_template_areas": null,
       "grid_template_columns": null,
       "grid_template_rows": null,
       "height": null,
       "justify_content": null,
       "justify_items": null,
       "left": null,
       "margin": null,
       "max_height": null,
       "max_width": null,
       "min_height": null,
       "min_width": null,
       "object_fit": null,
       "object_position": null,
       "order": null,
       "overflow": null,
       "padding": null,
       "right": null,
       "top": null,
       "visibility": null,
       "width": null
      }
     },
     "454146d0f7224f038689031002906e6f": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HBoxModel",
      "state": {
       "_dom_classes": [],
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HBoxModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/controls",
       "_view_module_version": "2.0.0",
       "_view_name": "HBoxView",
       "box_style": "",
       "children": [
        "IPY_MODEL_e4ae2b6f5a974fd4bafb6abb9d12ff26",
        "IPY_MODEL_577e1e3cc4db4942b0883577b3b52755",
        "IPY_MODEL_b40bdfb1ac1d4cffb7cefcb870c64d45"
       ],
       "layout": "IPY_MODEL_dc83c7bff2f241309537a8119dfc7555",
       "tabbable": null,
       "tooltip": null
      }
     },
     "577e1e3cc4db4942b0883577b3b52755": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "FloatProgressModel",
      "state": {
       "_dom_classes": [],
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "FloatProgressModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/controls",
       "_view_module_version": "2.0.0",
       "_view_name": "ProgressView",
       "bar_style": "success",
       "description": "",
       "description_allow_html": false,
       "layout": "IPY_MODEL_2d910cfd2d2a4fc49fc30fbbdc5576a7",
       "max": 1,
       "min": 0,
       "orientation": "horizontal",
       "style": "IPY_MODEL_74a6ba0c3cbc4051be0a83e152fe1e62",
       "tabbable": null,
       "tooltip": null,
       "value": 1
      }
     },
     "6086462a12d54bafa59d3c4566f06cb2": {
      "model_module": "@jupyter-widgets/base",
      "model_module_version": "2.0.0",
      "model_name": "LayoutModel",
      "state": {
       "_model_module": "@jupyter-widgets/base",
       "_model_module_version": "2.0.0",
       "_model_name": "LayoutModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "LayoutView",
       "align_content": null,
       "align_items": null,
       "align_self": null,
       "border_bottom": null,
       "border_left": null,
       "border_right": null,
       "border_top": null,
       "bottom": null,
       "display": null,
       "flex": null,
       "flex_flow": null,
       "grid_area": null,
       "grid_auto_columns": null,
       "grid_auto_flow": null,
       "grid_auto_rows": null,
       "grid_column": null,
       "grid_gap": null,
       "grid_row": null,
       "grid_template_areas": null,
       "grid_template_columns": null,
       "grid_template_rows": null,
       "height": null,
       "justify_content": null,
       "justify_items": null,
       "left": null,
       "margin": null,
       "max_height": null,
       "max_width": null,
       "min_height": null,
       "min_width": null,
       "object_fit": null,
       "object_position": null,
       "order": null,
       "overflow": null,
       "padding": null,
       "right": null,
       "top": null,
       "visibility": null,
       "width": null
      }
     },
     "74a6ba0c3cbc4051be0a83e152fe1e62": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "ProgressStyleModel",
      "state": {
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "ProgressStyleModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "StyleView",
       "bar_color": null,
       "description_width": ""
      }
     },
     "7d3f3d9e15894d05a4d188ff4f466554": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HTMLStyleModel",
      "state": {
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HTMLStyleModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "StyleView",
       "background": null,
       "description_width": "",
       "font_size": null,
       "text_color": null
      }
     },
     "b40bdfb1ac1d4cffb7cefcb870c64d45": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HTMLModel",
      "state": {
       "_dom_classes": [],
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HTMLModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/controls",
       "_view_module_version": "2.0.0",
       "_view_name": "HTMLView",
       "description": "",
       "description_allow_html": false,
       "layout": "IPY_MODEL_f1355871cc6f4dd4b50d9df5af20e5c8",
       "placeholder": "​",
       "style": "IPY_MODEL_ca245376fd9f4354af6b2befe4af4466",
       "tabbable": null,
       "tooltip": null,
       "value": " 1/1 [00:00&lt;00:00, 44.69it/s]"
      }
     },
     "ca245376fd9f4354af6b2befe4af4466": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HTMLStyleModel",
      "state": {
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HTMLStyleModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "StyleView",
       "background": null,
       "description_width": "",
       "font_size": null,
       "text_color": null
      }
     },
     "dc83c7bff2f241309537a8119dfc7555": {
      "model_module": "@jupyter-widgets/base",
      "model_module_version": "2.0.0",
      "model_name": "LayoutModel",
      "state": {
       "_model_module": "@jupyter-widgets/base",
       "_model_module_version": "2.0.0",
       "_model_name": "LayoutModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "LayoutView",
       "align_content": null,
       "align_items": null,
       "align_self": null,
       "border_bottom": null,
       "border_left": null,
       "border_right": null,
       "border_top": null,
       "bottom": null,
       "display": null,
       "flex": null,
       "flex_flow": null,
       "grid_area": null,
       "grid_auto_columns": null,
       "grid_auto_flow": null,
       "grid_auto_rows": null,
       "grid_column": null,
       "grid_gap": null,
       "grid_row": null,
       "grid_template_areas": null,
       "grid_template_columns": null,
       "grid_template_rows": null,
       "height": null,
       "justify_content": null,
       "justify_items": null,
       "left": null,
       "margin": null,
       "max_height": null,
       "max_width": null,
       "min_height": null,
       "min_width": null,
       "object_fit": null,
       "object_position": null,
       "order": null,
       "overflow": null,
       "padding": null,
       "right": null,
       "top": null,
       "visibility": null,
       "width": null
      }
     },
     "e4ae2b6f5a974fd4bafb6abb9d12ff26": {
      "model_module": "@jupyter-widgets/controls",
      "model_module_version": "2.0.0",
      "model_name": "HTMLModel",
      "state": {
       "_dom_classes": [],
       "_model_module": "@jupyter-widgets/controls",
       "_model_module_version": "2.0.0",
       "_model_name": "HTMLModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/controls",
       "_view_module_version": "2.0.0",
       "_view_name": "HTMLView",
       "description": "",
       "description_allow_html": false,
       "layout": "IPY_MODEL_6086462a12d54bafa59d3c4566f06cb2",
       "placeholder": "​",
       "style": "IPY_MODEL_7d3f3d9e15894d05a4d188ff4f466554",
       "tabbable": null,
       "tooltip": null,
       "value": "100%"
      }
     },
     "f1355871cc6f4dd4b50d9df5af20e5c8": {
      "model_module": "@jupyter-widgets/base",
      "model_module_version": "2.0.0",
      "model_name": "LayoutModel",
      "state": {
       "_model_module": "@jupyter-widgets/base",
       "_model_module_version": "2.0.0",
       "_model_name": "LayoutModel",
       "_view_count": null,
       "_view_module": "@jupyter-widgets/base",
       "_view_module_version": "2.0.0",
       "_view_name": "LayoutView",
       "align_content": null,
       "align_items": null,
       "align_self": null,
       "border_bottom": null,
       "border_left": null,
       "border_right": null,
       "border_top": null,
       "bottom": null,
       "display": null,
       "flex": null,
       "flex_flow": null,
       "grid_area": null,
       "grid_auto_columns": null,
       "grid_auto_flow": null,
       "grid_auto_rows": null,
       "grid_column": null,
       "grid_gap": null,
       "grid_row": null,
       "grid_template_areas": null,
       "grid_template_columns": null,
       "grid_template_rows": null,
       "height": null,
       "justify_content": null,
       "justify_items": null,
       "left": null,
       "margin": null,
       "max_height": null,
       "max_width": null,
       "min_height": null,
       "min_width": null,
       "object_fit": null,
       "object_position": null,
       "order": null,
       "overflow": null,
       "padding": null,
       "right": null,
       "top": null,
       "visibility": null,
       "width": null
      }
     }
    },
    "version_major": 2,
    "version_minor": 0
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}