File size: 34,377 Bytes
f9bd6e8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 |
{
"cells": [
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"<a href=\"https://colab.research.google.com/github/microsoft/autogen/blob/main/notebook/agentchat_stream.ipynb\" target=\"_parent\"><img src=\"https://colab.research.google.com/assets/colab-badge.svg\" alt=\"Open In Colab\"/></a>"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {
"slideshow": {
"slide_type": "slide"
}
},
"source": [
"# Interactive LLM Agent Dealing with Data Stream\n",
"\n",
"AutoGen offers conversable agents powered by LLM, tool or human, which can be used to perform tasks collectively via automated chat. This framwork allows tool use and human participance through multi-agent conversation.\n",
"Please find documentation about this feature [here](https://microsoft.github.io/autogen/docs/Use-Cases/agent_chat).\n",
"\n",
"In this notebook, we demonstrate how to use customized agents to continuously acquires news from the web and ask for investment suggestions.\n",
"\n",
"## Requirements\n",
"\n",
"AutoGen requires `Python>=3.8`. To run this notebook example, please install:\n",
"```bash\n",
"pip install pyautogen\n",
"```"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"execution": {
"iopub.execute_input": "2023-02-13T23:40:52.317406Z",
"iopub.status.busy": "2023-02-13T23:40:52.316561Z",
"iopub.status.idle": "2023-02-13T23:40:52.321193Z",
"shell.execute_reply": "2023-02-13T23:40:52.320628Z"
}
},
"outputs": [],
"source": [
"# %pip install pyautogen~=0.1.0"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Set your API Endpoint\n",
"\n",
"The [`config_list_from_json`](https://microsoft.github.io/autogen/docs/reference/oai/openai_utils#config_list_from_json) function loads a list of configurations from an environment variable or a json file.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"import autogen\n",
"\n",
"config_list = autogen.config_list_from_json(\"OAI_CONFIG_LIST\")"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"It first looks for environment variable \"OAI_CONFIG_LIST\" which needs to be a valid json string. If that variable is not found, it then looks for a json file named \"OAI_CONFIG_LIST\". It filters the configs by models (you can filter by other keys as well). Only the models with matching names are kept in the list based on the filter condition.\n",
"\n",
"The config list looks like the following:\n",
"```python\n",
"config_list = [\n",
" {\n",
" 'model': 'gpt-4',\n",
" 'api_key': '<your OpenAI API key here>',\n",
" }, # OpenAI API endpoint for gpt-4\n",
" {\n",
" 'model': 'gpt-4',\n",
" 'api_key': '<your first Azure OpenAI API key here>',\n",
" 'api_base': '<your first Azure OpenAI API base here>',\n",
" 'api_type': 'azure',\n",
" 'api_version': '2023-06-01-preview',\n",
" }, # Azure OpenAI API endpoint for gpt-4\n",
" {\n",
" 'model': 'gpt-4',\n",
" 'api_key': '<your second Azure OpenAI API key here>',\n",
" 'api_base': '<your second Azure OpenAI API base here>',\n",
" 'api_type': 'azure',\n",
" 'api_version': '2023-06-01-preview',\n",
" }, # another Azure OpenAI API endpoint for gpt-4\n",
" {\n",
" 'model': 'gpt-3.5-turbo',\n",
" 'api_key': '<your OpenAI API key here>',\n",
" }, # OpenAI API endpoint for gpt-3.5-turbo\n",
" {\n",
" 'model': 'gpt-3.5-turbo',\n",
" 'api_key': '<your first Azure OpenAI API key here>',\n",
" 'api_base': '<your first Azure OpenAI API base here>',\n",
" 'api_type': 'azure',\n",
" 'api_version': '2023-06-01-preview',\n",
" }, # Azure OpenAI API endpoint for gpt-3.5-turbo\n",
" {\n",
" 'model': 'gpt-3.5-turbo',\n",
" 'api_key': '<your second Azure OpenAI API key here>',\n",
" 'api_base': '<your second Azure OpenAI API base here>',\n",
" 'api_type': 'azure',\n",
" 'api_version': '2023-06-01-preview',\n",
" }, # another Azure OpenAI API endpoint for gpt-3.5-turbo\n",
"]\n",
"```\n",
"\n",
"If you open this notebook in colab, you can upload your files by clicking the file icon on the left panel and then choose \"upload file\" icon.\n",
"\n",
"You can set the value of config_list in other ways you prefer, e.g., loading from a YAML file."
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"## Example Task: Investment suggestion with realtime data\n",
"\n",
"We consider a scenario where news data are streamed from a source, and we use an assistant agent to continually provide investment suggestions based on the data.\n",
"\n",
"First, we use the following code to simulate the data stream process."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import asyncio\n",
"\n",
"def get_market_news(ind, ind_upper):\n",
" import requests\n",
" import json\n",
" # replace the \"demo\" apikey below with your own key from https://www.alphavantage.co/support/#api-key\n",
" # url = 'https://www.alphavantage.co/query?function=NEWS_SENTIMENT&tickers=AAPL&sort=LATEST&limit=5&apikey=demo'\n",
" # r = requests.get(url)\n",
" # data = r.json()\n",
" # with open('market_news_local.json', 'r') as file:\n",
" # # Load JSON data from file\n",
" # data = json.load(file)\n",
" data = {\n",
" \"feed\": [\n",
" {\n",
" \"title\": \"Palantir CEO Says Our Generation's Atomic Bomb Could Be AI Weapon - And Arrive Sooner Than You Think - Palantir Technologies ( NYSE:PLTR ) \",\n",
" \"summary\": \"Christopher Nolan's blockbuster movie \\\"Oppenheimer\\\" has reignited the public discourse surrounding the United States' use of an atomic bomb on Japan at the end of World War II.\",\n",
" \"overall_sentiment_score\": 0.009687,\n",
" },\n",
" {\n",
" \"title\": '3 \"Hedge Fund Hotels\" Pulling into Support',\n",
" \"summary\": \"Institutional quality stocks have several benefits including high-liquidity, low beta, and a long runway. Strategist Andrew Rocco breaks down what investors should look for and pitches 3 ideas.\",\n",
" \"banner_image\": \"https://staticx-tuner.zacks.com/images/articles/main/92/87.jpg\",\n",
" \"overall_sentiment_score\": 0.219747,\n",
" },\n",
" {\n",
" \"title\": \"PDFgear, Bringing a Completely-Free PDF Text Editing Feature\",\n",
" \"summary\": \"LOS ANGELES, July 26, 2023 /PRNewswire/ -- PDFgear, a leading provider of PDF solutions, announced a piece of exciting news for everyone who works extensively with PDF documents.\",\n",
" \"overall_sentiment_score\": 0.360071,\n",
" },\n",
" {\n",
" \"title\": \"Researchers Pitch 'Immunizing' Images Against Deepfake Manipulation\",\n",
" \"summary\": \"A team at MIT says injecting tiny disruptive bits of code can cause distorted deepfake images.\",\n",
" \"overall_sentiment_score\": -0.026894,\n",
" },\n",
" {\n",
" \"title\": \"Nvidia wins again - plus two more takeaways from this week's mega-cap earnings\",\n",
" \"summary\": \"We made some key conclusions combing through quarterly results for Microsoft and Alphabet and listening to their conference calls with investors.\",\n",
" \"overall_sentiment_score\": 0.235177,\n",
" },\n",
" ]\n",
" }\n",
" feeds = data[\"feed\"][ind:ind_upper]\n",
" feeds_summary = \"\\n\".join(\n",
" [\n",
" f\"News summary: {f['title']}. {f['summary']} overall_sentiment_score: {f['overall_sentiment_score']}\"\n",
" for f in feeds\n",
" ]\n",
" )\n",
" return feeds_summary\n",
"\n",
"data = asyncio.Future()\n",
"\n",
"async def add_stock_price_data():\n",
" # simulating the data stream\n",
" for i in range(0, 5, 1):\n",
" latest_news = get_market_news(i, i + 1)\n",
" if data.done():\n",
" data.result().append(latest_news)\n",
" else:\n",
" data.set_result([latest_news])\n",
" # print(data.result())\n",
" await asyncio.sleep(5)\n",
"\n",
"data_task = asyncio.create_task(add_stock_price_data())\n"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"Then, we construct agents. An assistant agent is created to answer the question using LLM. A UserProxyAgent is created to ask questions, and add the new data in the conversation when they are available."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"import autogen\n",
"\n",
"# create an AssistantAgent instance named \"assistant\"\n",
"assistant = autogen.AssistantAgent(\n",
" name=\"assistant\",\n",
" llm_config={\n",
" \"request_timeout\": 600,\n",
" \"seed\": 41,\n",
" \"config_list\": config_list,\n",
" \"temperature\": 0,\n",
" },\n",
" system_message=\"You are a financial expert.\",\n",
")\n",
"# create a UserProxyAgent instance named \"user\"\n",
"user_proxy = autogen.UserProxyAgent(\n",
" name=\"user\",\n",
" human_input_mode=\"NEVER\",\n",
" max_consecutive_auto_reply=5,\n",
" code_execution_config=False,\n",
" default_auto_reply=None,\n",
")\n",
"\n",
"async def add_data_reply(recipient, messages, sender, config):\n",
" await asyncio.sleep(0.1)\n",
" data = config[\"news_stream\"]\n",
" if data.done():\n",
" result = data.result()\n",
" if result:\n",
" news_str = \"\\n\".join(result)\n",
" result.clear()\n",
" return (\n",
" True,\n",
" f\"Just got some latest market news. Merge your new suggestion with previous ones.\\n{news_str}\",\n",
" )\n",
" return False, None\n",
"\n",
"user_proxy.register_reply(autogen.AssistantAgent, add_data_reply, 1, config={\"news_stream\": data})"
]
},
{
"attachments": {},
"cell_type": "markdown",
"metadata": {},
"source": [
"We invoke the `a_initiate_chat()` method of the user proxy agent to start the conversation."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\u001b[33muser\u001b[0m (to assistant):\n",
"\n",
"Give me investment suggestion in 3 bullet points.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant\u001b[0m (to user):\n",
"\n",
"1. Diversify Your Portfolio: Don't put all your eggs in one basket. Spread your investments across a variety of asset classes such as stocks, bonds, real estate, and commodities. This can help to mitigate risk and potentially increase returns.\n",
"\n",
"2. Invest for the Long Term: Investing is not about making a quick buck, but about growing your wealth over time. Stick to a long-term investment strategy and avoid the temptation to engage in frequent buying and selling.\n",
"\n",
"3. Regularly Review Your Investments: The market is dynamic and constantly changing. Regularly review your investment portfolio to ensure it aligns with your financial goals and risk tolerance. Adjust your investments as necessary based on changes in your personal circumstances and market conditions.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33muser\u001b[0m (to assistant):\n",
"\n",
"Just got some latest market news. Merge your new suggestion with previous ones.\n",
"News summary: Palantir CEO Says Our Generation's Atomic Bomb Could Be AI Weapon - And Arrive Sooner Than You Think - Palantir Technologies ( NYSE:PLTR ) . Christopher Nolan's blockbuster movie \"Oppenheimer\" has reignited the public discourse surrounding the United States' use of an atomic bomb on Japan at the end of World War II. overall_sentiment_score: 0.009687\n",
"News summary: 3 \"Hedge Fund Hotels\" Pulling into Support. Institutional quality stocks have several benefits including high-liquidity, low beta, and a long runway. Strategist Andrew Rocco breaks down what investors should look for and pitches 3 ideas. overall_sentiment_score: 0.219747\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant\u001b[0m (to user):\n",
"\n",
"1. Diversify Your Portfolio: Given the recent news about AI technology and its potential impact, consider investing in tech companies like Palantir Technologies that are at the forefront of AI development. However, remember to maintain a diversified portfolio across various sectors and asset classes to mitigate risk.\n",
"\n",
"2. Long-Term Investment Strategy: Despite the potential for rapid advancements in AI, it's important to maintain a long-term investment perspective. While these developments may bring short-term volatility, they could also present long-term growth opportunities.\n",
"\n",
"3. Regularly Review and Adjust Your Investments: With the news about \"Hedge Fund Hotels\" and their potential benefits, consider reviewing your portfolio to see if these high-liquidity, low beta stocks fit into your investment strategy. However, always adjust your investments based on your personal circumstances, risk tolerance, and market conditions. \n",
"\n",
"4. Invest in AI and Tech Stocks: Given the potential of AI as highlighted by Palantir's CEO, consider investing in companies that are leading in AI and other technological advancements. This could provide significant growth opportunities.\n",
"\n",
"5. Consider \"Hedge Fund Hotels\": The news suggests that these stocks have several benefits including high-liquidity, low beta, and a long runway. If these align with your investment goals, they could be a good addition to your portfolio.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33muser\u001b[0m (to assistant):\n",
"\n",
"Just got some latest market news. Merge your new suggestion with previous ones.\n",
"News summary: PDFgear, Bringing a Completely-Free PDF Text Editing Feature. LOS ANGELES, July 26, 2023 /PRNewswire/ -- PDFgear, a leading provider of PDF solutions, announced a piece of exciting news for everyone who works extensively with PDF documents. overall_sentiment_score: 0.360071\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant\u001b[0m (to user):\n",
"\n",
"1. Diversify Your Portfolio: With the latest news about PDFgear, consider investing in companies that provide digital solutions, as they are becoming increasingly important in our digital age. However, continue to maintain a diversified portfolio across various sectors and asset classes to mitigate risk.\n",
"\n",
"2. Long-Term Investment Strategy: The announcement from PDFgear could potentially lead to short-term gains, but remember to maintain a long-term investment perspective. The digital solutions sector is expected to grow in the long run, providing potential growth opportunities.\n",
"\n",
"3. Regularly Review and Adjust Your Investments: Given the news about PDFgear and its potential impact on the digital solutions sector, it's important to review your portfolio to see if it aligns with these new market trends. Adjust your investments based on your personal circumstances, risk tolerance, and market conditions.\n",
"\n",
"4. Invest in Digital Solutions: The news about PDFgear highlights the potential growth in the digital solutions sector. Consider investing in companies that are leading in this field, as they could provide significant growth opportunities.\n",
"\n",
"5. Consider Tech Stocks: With the continuous advancements in technology, tech stocks, including those in AI, digital solutions, and other tech sub-sectors, could be a good addition to your portfolio, given their potential for high growth.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33muser\u001b[0m (to assistant):\n",
"\n",
"Just got some latest market news. Merge your new suggestion with previous ones.\n",
"News summary: Researchers Pitch 'Immunizing' Images Against Deepfake Manipulation. A team at MIT says injecting tiny disruptive bits of code can cause distorted deepfake images. overall_sentiment_score: -0.026894\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant\u001b[0m (to user):\n",
"\n",
"1. Diversify Your Portfolio: The latest news about deepfake manipulation suggests potential growth in cybersecurity and AI sectors. Consider investing in companies that are working on these technologies, but continue to maintain a diversified portfolio across various sectors and asset classes to mitigate risk.\n",
"\n",
"2. Long-Term Investment Strategy: While the news about deepfake manipulation might cause short-term volatility in the tech sector, it's important to maintain a long-term investment perspective. The cybersecurity and AI sectors are expected to grow in the long run, providing potential growth opportunities.\n",
"\n",
"3. Regularly Review and Adjust Your Investments: Given the news about deepfake manipulation and its potential impact on the tech sector, it's important to review your portfolio to see if it aligns with these new market trends. Adjust your investments based on your personal circumstances, risk tolerance, and market conditions.\n",
"\n",
"4. Invest in Cybersecurity and AI: The news about deepfake manipulation highlights the potential growth in the cybersecurity and AI sectors. Consider investing in companies that are leading in these fields, as they could provide significant growth opportunities.\n",
"\n",
"5. Consider Tech Stocks: With the continuous advancements in technology, tech stocks, including those in AI, digital solutions, cybersecurity, and other tech sub-sectors, could be a good addition to your portfolio, given their potential for high growth.\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33muser\u001b[0m (to assistant):\n",
"\n",
"Just got some latest market news. Merge your new suggestion with previous ones.\n",
"News summary: Nvidia wins again - plus two more takeaways from this week's mega-cap earnings. We made some key conclusions combing through quarterly results for Microsoft and Alphabet and listening to their conference calls with investors. overall_sentiment_score: 0.235177\n",
"\n",
"--------------------------------------------------------------------------------\n",
"\u001b[33massistant\u001b[0m (to user):\n",
"\n",
"1. Diversify Your Portfolio: The latest news about Nvidia, Microsoft, and Alphabet suggests potential growth in the tech sector. Consider investing in these companies, but continue to maintain a diversified portfolio across various sectors and asset classes to mitigate risk.\n",
"\n",
"2. Long-Term Investment Strategy: While the news about these tech giants might cause short-term volatility, it's important to maintain a long-term investment perspective. The tech sector, particularly companies like Nvidia, Microsoft, and Alphabet, are expected to grow in the long run, providing potential growth opportunities.\n",
"\n",
"3. Regularly Review and Adjust Your Investments: Given the news about Nvidia, Microsoft, and Alphabet and their potential impact on the tech sector, it's important to review your portfolio to see if it aligns with these new market trends. Adjust your investments based on your personal circumstances, risk tolerance, and market conditions.\n",
"\n",
"4. Invest in Tech Giants: The news about Nvidia, Microsoft, and Alphabet highlights the potential growth in the tech sector. Consider investing in these tech giants, as they could provide significant growth opportunities.\n",
"\n",
"5. Consider Tech Stocks: With the continuous advancements in technology, tech stocks, including those in AI, digital solutions, cybersecurity, and other tech sub-sectors, could be a good addition to your portfolio, given their potential for high growth.\n",
"\n",
"--------------------------------------------------------------------------------\n"
]
}
],
"source": [
"await user_proxy.a_initiate_chat(\n",
" assistant,\n",
" message=\"\"\"Give me investment suggestion in 3 bullet points.\"\"\",\n",
")\n",
"while not data_task.done() and not data_task.cancelled():\n",
" reply = await user_proxy.a_generate_reply(sender=assistant)\n",
" if reply is not None:\n",
" await user_proxy.a_send(reply, assistant)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.17"
},
"vscode": {
"interpreter": {
"hash": "949777d72b0d2535278d3dc13498b2535136f6dfe0678499012e853ee9abcab1"
}
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"state": {
"2d910cfd2d2a4fc49fc30fbbdc5576a7": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"454146d0f7224f038689031002906e6f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_e4ae2b6f5a974fd4bafb6abb9d12ff26",
"IPY_MODEL_577e1e3cc4db4942b0883577b3b52755",
"IPY_MODEL_b40bdfb1ac1d4cffb7cefcb870c64d45"
],
"layout": "IPY_MODEL_dc83c7bff2f241309537a8119dfc7555",
"tabbable": null,
"tooltip": null
}
},
"577e1e3cc4db4942b0883577b3b52755": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_2d910cfd2d2a4fc49fc30fbbdc5576a7",
"max": 1,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_74a6ba0c3cbc4051be0a83e152fe1e62",
"tabbable": null,
"tooltip": null,
"value": 1
}
},
"6086462a12d54bafa59d3c4566f06cb2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"74a6ba0c3cbc4051be0a83e152fe1e62": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"7d3f3d9e15894d05a4d188ff4f466554": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"background": null,
"description_width": "",
"font_size": null,
"text_color": null
}
},
"b40bdfb1ac1d4cffb7cefcb870c64d45": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_f1355871cc6f4dd4b50d9df5af20e5c8",
"placeholder": "",
"style": "IPY_MODEL_ca245376fd9f4354af6b2befe4af4466",
"tabbable": null,
"tooltip": null,
"value": " 1/1 [00:00<00:00, 44.69it/s]"
}
},
"ca245376fd9f4354af6b2befe4af4466": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "StyleView",
"background": null,
"description_width": "",
"font_size": null,
"text_color": null
}
},
"dc83c7bff2f241309537a8119dfc7555": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"e4ae2b6f5a974fd4bafb6abb9d12ff26": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "2.0.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "2.0.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "2.0.0",
"_view_name": "HTMLView",
"description": "",
"description_allow_html": false,
"layout": "IPY_MODEL_6086462a12d54bafa59d3c4566f06cb2",
"placeholder": "",
"style": "IPY_MODEL_7d3f3d9e15894d05a4d188ff4f466554",
"tabbable": null,
"tooltip": null,
"value": "100%"
}
},
"f1355871cc6f4dd4b50d9df5af20e5c8": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "2.0.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "2.0.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "2.0.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border_bottom": null,
"border_left": null,
"border_right": null,
"border_top": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
}
},
"version_major": 2,
"version_minor": 0
}
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|