Text_summarizer / app.py
MrSimple07's picture
Create app.py
f3b811a verified
raw
history blame
833 Bytes
import gradio as gr
from transformers import pipeline
# Initialize the BART summarization model from Hugging Face
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
# Define the function that will summarize the text
def summarize_text(input_text):
summary = summarizer(input_text, max_length=150, min_length=50, do_sample=False)
return summary[0]['summary_text']
# Create a Gradio interface
iface = gr.Interface(fn=summarize_text,
inputs="text",
outputs="text",
title="Text Summarization App",
description="This app summarizes long-form text (articles, papers, books) into concise key points or a paragraph.",
examples=[["Enter your article text here"]])
# Launch the interface
iface.launch()