Spaces:
Sleeping
Sleeping
import pandas as pd | |
import streamlit as st | |
import numpy as np | |
import pickle | |
import sklearn | |
from PIL import Image | |
# Load the saved components: | |
with open("dt_model.pkl", "rb") as f: | |
components = pickle.load(f) | |
# Extract the individual components | |
num_imputer = components["num_imputer"] | |
cat_imputer = components["cat_imputer"] | |
encoder = components["encoder"] | |
scaler = components["scaler"] | |
dt_model = components["models"] | |
# Create the app | |
st.set_page_config( | |
layout="wide" | |
) | |
# Add an image or logo to the app | |
image = Image.open('copofav.jpg') | |
# Open the image file | |
st.image(image) | |
#add app title | |
st.title("SALES PREDICTION APP") | |
# Add some text | |
st.write("Please ENTER the relevant data and CLICK Predict.") | |
# Create the input fields | |
input_data = {} | |
col1,col2,col3 = st.columns(3) | |
with col1: | |
input_data['store_nbr'] = st.slider("Store Number",0,54) | |
input_data['products'] = st.selectbox("Products Family", ['OTHERS', 'CLEANING', 'FOODS', 'STATIONERY', 'GROCERY', 'HARDWARE', | |
'HOME', 'CLOTHING']) | |
input_data['onpromotion'] =st.number_input("Discount Amt On Promotion",step=1) | |
input_data['state'] = st.selectbox("State", ['Pichincha', 'Cotopaxi', 'Chimborazo', 'Imbabura', | |
'Santo Domingo de los Tsachilas', 'Bolivar', 'Pastaza', | |
'Tungurahua', 'Guayas', 'Santa Elena', 'Los Rios', 'Azuay', 'Loja', | |
'El Oro', 'Esmeraldas', 'Manabi']) | |
with col2: | |
input_data['store_type'] = st.selectbox("Store Type",['D', 'C', 'B', 'E', 'A']) | |
input_data['cluster'] = st.number_input("Cluster",step=1) | |
input_data['dcoilwtico'] = st.number_input("DCOILWTICO",step=1) | |
input_data['year'] = st.number_input("Year to Predict",step=1) | |
with col3: | |
input_data['month'] = st.slider("Month",1,12) | |
input_data['day'] = st.slider("Day",1,31) | |
input_data['dayofweek'] = st.number_input("Day of Week,0=Sunday and 6=Satruday",step=1) | |
input_data['end_month'] = st.selectbox("Is it End of the Month?",['True','False']) | |
# Create a button to make a prediction | |
if st.button("Predict"): | |
# Convert the input data to a pandas DataFrame | |
input_df = pd.DataFrame([input_data]) | |
# categorizing the products | |
food_families = ['BEVERAGES', 'BREAD/BAKERY', 'FROZEN FOODS', 'MEATS', 'PREPARED FOODS', 'DELI','PRODUCE', 'DAIRY','POULTRY','EGGS','SEAFOOD'] | |
home_families = ['HOME AND KITCHEN I', 'HOME AND KITCHEN II', 'HOME APPLIANCES'] | |
clothing_families = ['LINGERIE', 'LADYSWARE'] | |
grocery_families = ['GROCERY I', 'GROCERY II'] | |
stationery_families = ['BOOKS', 'MAGAZINES','SCHOOL AND OFFICE SUPPLIES'] | |
cleaning_families = ['HOME CARE', 'BABY CARE','PERSONAL CARE'] | |
hardware_families = ['PLAYERS AND ELECTRONICS','HARDWARE'] | |
others_families = ['AUTOMOTIVE', 'BEAUTY','CELEBRATION', 'LADIESWEAR', 'LAWN AND GARDEN', 'LIQUOR,WINE,BEER', 'PET SUPPLIES'] | |
# Apply the same preprocessing steps as done during training | |
input_df['products'] = np.where(input_df['products'].isin(food_families), 'FOODS', input_df['products']) | |
input_df['products'] = np.where(input_df['products'].isin(home_families), 'HOME', input_df['products']) | |
input_df['products'] = np.where(input_df['products'].isin(clothing_families), 'CLOTHING', input_df['products']) | |
input_df['products'] = np.where(input_df['products'].isin(grocery_families), 'GROCERY', input_df['products']) | |
input_df['products'] = np.where(input_df['products'].isin(stationery_families), 'STATIONERY', input_df['products']) | |
input_df['products'] = np.where(input_df['products'].isin(cleaning_families), 'CLEANING', input_df['products']) | |
input_df['products'] = np.where(input_df['products'].isin(hardware_families), 'HARDWARE', input_df['products']) | |
input_df['products'] = np.where(input_df['products'].isin(others_families), 'OTHERS', input_df['products']) | |
categorical_columns = ['products', 'end_month', 'store_type', 'state'] | |
numerical_columns =['store_nbr','onpromotion','cluster','dcoilwtico','year','month','day','dayofweek'] | |
# Impute missing values | |
input_df_cat = input_df[categorical_columns].copy() | |
input_df_num = input_df[numerical_columns].copy() | |
input_df_cat_imputed = cat_imputer.transform(input_df_cat) | |
input_df_num_imputed = num_imputer.transform(input_df_num) | |
# Encode categorical features | |
input_df_cat_encoded = pd.DataFrame(encoder.transform(input_df_cat_imputed).toarray(), | |
columns=encoder.get_feature_names_out(categorical_columns)) | |
# Scale numerical features | |
input_df_num_scaled = scaler.transform(input_df_num_imputed) | |
input_df_num_sc = pd.DataFrame(input_df_num_scaled, columns=numerical_columns) | |
# Combine encoded categorical features and scaled numerical features | |
input_df_processed = pd.concat([input_df_num_sc, input_df_cat_encoded], axis=1) | |
# Make predictions using the trained model | |
predictions = dt_model.predict(input_df_processed) | |
# Display the predicted sales value to the user: | |
st.write("Predicted Sales:", predictions[0]) |