Spaces:
Runtime error
Runtime error
import torch | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
tokenizer = AutoTokenizer.from_pretrained("Mr-Vicky-01/Gemma-2B-Finetuined-pythonCode") | |
model = AutoModelForCausalLM.from_pretrained("Mr-Vicky-01/Gemma-2B-Finetuined-pythonCode") | |
def generate_code(text): | |
prompt_template = f""" | |
<start_of_turn>user based on given instruction create a solution\n\nhere are the instruction {text} | |
<end_of_turn>\n<start_of_turn>model | |
""" | |
prompt = prompt_template | |
encodeds = tokenizer(prompt, return_tensors="pt", add_special_tokens=True).input_ids | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
model.to(device) | |
inputs = encodeds.to(device) | |
# Increase max_new_tokens if needed | |
generated_ids = model.generate(inputs, max_new_tokens=500, do_sample=False, pad_token_id=tokenizer.eos_token_id) | |
ans = '' | |
for i in tokenizer.decode(generated_ids[0], skip_special_tokens=True).split('<end_of_turn>')[:2]: | |
ans += i | |
# Extract only the model's answer | |
model_answer = ans.split("model")[1].strip() | |
return model_answer.split("user")[1] | |
demo = gr.Interface(fn=generate_code, inputs='text',outputs='text',title='Text Summarization') | |
demo.launch(debug=True,share=True) |