File size: 12,707 Bytes
2a50f45
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import torch
import torch.fft as fft
import math


def get_longpath(BOX_SIZE_H=0.3, BOX_SIZE_W=0.3, input_mode=4):

    if input_mode == 1:
        # mode 1
        inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], 
                [7, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 15 * 7, (1-BOX_SIZE_W) / 15 * 7 + BOX_SIZE_W], 
                [8, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 15 * 8, (1-BOX_SIZE_W) / 15 * 8 + BOX_SIZE_W], 
                [15, 0, 0 + BOX_SIZE_H, 1-BOX_SIZE_W, 1],
                [16, 0.1, 0.1 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9],
                [25, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W],
                [31, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W],
                [32, 1-BOX_SIZE_H, 1, 0, 0 + BOX_SIZE_W],
                [39, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 15 * 7, (1-BOX_SIZE_W) / 15 * 7 + BOX_SIZE_W],
                [40, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 15 * 8, (1-BOX_SIZE_W) / 15 * 8 + BOX_SIZE_W],
                [47, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1],
                [48, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9],
                [57, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W],
                [63, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W]]
    elif input_mode == 2:
        # mode 2
        inputs = [[0, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], 
                  [6, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], 
                  [15, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9],
                  [16, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], 
                  [22, 0.1, 0.1 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], 
                  [31, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W],
                  [32, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W],
                  [41, 0.1, 0.1 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9],
                  [47, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9],
                  [48, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9],
                  [57, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W],
                  [63, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W]]
    elif input_mode == 3:
        # mode 3 ||||
        inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W],
            [9, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 7 * 1, (1-BOX_SIZE_W) / 7 * 1 + BOX_SIZE_W],
            [18, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 7 * 2, (1-BOX_SIZE_W) / 7 * 2 + BOX_SIZE_W],
            [27, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 7 * 3, (1-BOX_SIZE_W) / 7 * 3 + BOX_SIZE_W],
            [36, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 7 * 4, (1-BOX_SIZE_W) / 7 * 4 + BOX_SIZE_W],
            [45, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 7 * 5, (1-BOX_SIZE_W) / 7 * 5 + BOX_SIZE_W],
            [54, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 7 * 6, (1-BOX_SIZE_W) / 7 * 6 + BOX_SIZE_W],
            [63, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1]]
    elif input_mode == 4:
        # mode 4 ----
        inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W],
            [9, (1-BOX_SIZE_H) / 7 * 1, (1-BOX_SIZE_H) / 7 * 1 + BOX_SIZE_H, 1-BOX_SIZE_W, 1],
            [18, (1-BOX_SIZE_H) / 7 * 2, (1-BOX_SIZE_H) / 7 * 2 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W],
            [27, (1-BOX_SIZE_H) / 7 * 3, (1-BOX_SIZE_H) / 7 * 3 + BOX_SIZE_H, 1-BOX_SIZE_W, 1],
            [36, (1-BOX_SIZE_H) / 7 * 4, (1-BOX_SIZE_H) / 7 * 4 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W],
            [45, (1-BOX_SIZE_H) / 7 * 5, (1-BOX_SIZE_H) / 7 * 5 + BOX_SIZE_H, 1-BOX_SIZE_W, 1],
            [54, (1-BOX_SIZE_H) / 7 * 6, (1-BOX_SIZE_H) / 7 * 6 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W],
            [63, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1]]
    else:
        print('error')
        exit()

    outputs = plan_path(inputs)
    # print(outputs)
    return outputs

def get_path(BOX_SIZE_H=0.3, BOX_SIZE_W=0.3, input_mode=0):

    if input_mode == 0:
        # \ d
        inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], [15, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1]] 
    elif input_mode == 1:
        # / re d
        inputs = [[0, 0, 0 + BOX_SIZE_H, 1-BOX_SIZE_W, 1], [15, 1-BOX_SIZE_H, 1, 0, 0 + BOX_SIZE_W]] 
    elif input_mode == 2:        
        # L
        inputs = [[0, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], [6, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], [15, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9]] 
    elif input_mode == 3:     
        # re L
        inputs = [[0, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], [6, 0.1, 0.1 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], [15, 0.1, 0.1 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W]] 
    elif input_mode == 4:     
        # V
        inputs = [[0, 0, 0 + BOX_SIZE_H, 0, 0 + BOX_SIZE_W], [7, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 15 * 7, (1-BOX_SIZE_W) / 15 * 7 + BOX_SIZE_W], [8, 1-BOX_SIZE_H, 1, (1-BOX_SIZE_W) / 15 * 8, (1-BOX_SIZE_W) / 15 * 8 + BOX_SIZE_W], [15, 0, 0 + BOX_SIZE_H, 1-BOX_SIZE_W, 1]]
    elif input_mode == 5:     
        # re V
        inputs = [[0, 1-BOX_SIZE_H, 1, 1-BOX_SIZE_W, 1], [7, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 15 * 8, (1-BOX_SIZE_W) / 15 * 8 + BOX_SIZE_W], [8, 0, 0 + BOX_SIZE_H, (1-BOX_SIZE_W) / 15 * 7, (1-BOX_SIZE_W) / 15 * 7 + BOX_SIZE_W], [15, 1-BOX_SIZE_H, 1, 0, 0 + BOX_SIZE_W]]
    elif input_mode == 6:    
        # -- goback
        inputs = [[0, 0.35, 0.35 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W], [7, 0.35, 0.35 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], [8, 0.35, 0.35 + BOX_SIZE_H, 0.9-BOX_SIZE_W, 0.9], [15, 0.35, 0.35 + BOX_SIZE_H, 0.1, 0.1 + BOX_SIZE_W]] 
    elif input_mode == 7:    
        # tri
        inputs = [[0, 0.1, 0.1 + BOX_SIZE_H, 0.35, 0.35 + BOX_SIZE_W], [5, 0.9-BOX_SIZE_H, 0.9, 0.9-BOX_SIZE_W, 0.9], [10, 0.9-BOX_SIZE_H, 0.9, 0.1, 0.1 + BOX_SIZE_W], [15, 0.1, 0.1 + BOX_SIZE_H, 0.35, 0.35 + BOX_SIZE_W]]

    outputs = plan_path(inputs)
    return outputs

# input: List([frame, h_start, h_end, w_start, w_end], ...)
# return: List([h_start, h_end, w_start, w_end], ...)
def plan_path(input, video_length = 16):
    len_input = len(input)
    path = [input[0][1:]]
    for i in range(1, len_input):
        start = input[i-1]
        end = input[i]
        start_frame = start[0]
        end_frame = end[0]
        h_start_change = (end[1] - start[1]) / (end_frame - start_frame)
        h_end_change = (end[2] - start[2]) / (end_frame - start_frame)
        w_start_change = (end[3] - start[3]) / (end_frame - start_frame)
        w_end_change = (end[4] - start[4]) / (end_frame - start_frame)
        for j in range(start_frame+1, end_frame + 1):
            increase_frame = j - start_frame
            path += [[increase_frame * h_start_change + start[1], increase_frame * h_end_change + start[2], increase_frame * w_start_change + start[3], increase_frame * w_end_change + start[4]]]
 
    if input[0][0] > 0:
        h_change = path[1][0] - path[0][0]
        w_change = path[1][2] - path[0][2]
        for i in range(input[0][0]):
            path = [path[0][0] - h_change, path[0][1] - h_change, path[0][2] - w_change, path[0][3] - w_change] + path

    if input[-1][0] < video_length - 1:
        h_change = path[-1][0] - path[-2][0]
        w_change = path[-1][2] - path[-2][2]
        for i in range(video_length - 1 - input[-1][0]):
            path = path + [path[-1][0] + h_change, path[-1][1] + h_change, path[-1][2] + w_change, path[-1][3] + w_change]

    return path


def gaussian_2d(x=0, y=0, mx=0, my=0, sx=1, sy=1):
    """ 2d Gaussian weight function
    """
    gaussian_map = (
        1
        / (2 * math.pi * sx * sy)
        * torch.exp(-((x - mx) ** 2 / (2 * sx**2) + (y - my) ** 2 / (2 * sy**2)))
    )
    gaussian_map.div_(gaussian_map.max())
    return gaussian_map

def gaussian_weight(height=32, width=32, KERNEL_DIVISION=3.0):

    x = torch.linspace(0, height, height)
    y = torch.linspace(0, width, width)
    x, y = torch.meshgrid(x, y, indexing="ij")
    noise_patch = (
                    gaussian_2d(
                        x,
                        y,
                        mx=int(height / 2),
                        my=int(width / 2),
                        sx=float(height / KERNEL_DIVISION),
                        sy=float(width / KERNEL_DIVISION),
                    )
                ).half()
    return noise_patch

def freq_mix_3d(x, noise, LPF):
    """
    Noise reinitialization.

    Args:
        x: diffused latent
        noise: randomly sampled noise
        LPF: low pass filter
    """
    # FFT
    x_freq = fft.fftn(x, dim=(-3, -2, -1))
    x_freq = fft.fftshift(x_freq, dim=(-3, -2, -1))
    noise_freq = fft.fftn(noise, dim=(-3, -2, -1))
    noise_freq = fft.fftshift(noise_freq, dim=(-3, -2, -1))

    # frequency mix
    HPF = 1 - LPF
    x_freq_low = x_freq * LPF
    noise_freq_high = noise_freq * HPF
    x_freq_mixed = x_freq_low + noise_freq_high # mix in freq domain

    # IFFT
    x_freq_mixed = fft.ifftshift(x_freq_mixed, dim=(-3, -2, -1))
    x_mixed = fft.ifftn(x_freq_mixed, dim=(-3, -2, -1)).real

    return x_mixed


def get_freq_filter(shape, device, filter_type, n, d_s, d_t):
    """
    Form the frequency filter for noise reinitialization.

    Args:
        shape: shape of latent (B, C, T, H, W)
        filter_type: type of the freq filter
        n: (only for butterworth) order of the filter, larger n ~ ideal, smaller n ~ gaussian
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    if filter_type == "gaussian":
        return gaussian_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == "ideal":
        return ideal_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == "box":
        return box_low_pass_filter(shape=shape, d_s=d_s, d_t=d_t).to(device)
    elif filter_type == "butterworth":
        return butterworth_low_pass_filter(shape=shape, n=n, d_s=d_s, d_t=d_t).to(device)
    else:
        raise NotImplementedError

def gaussian_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the gaussian low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[..., t,h,w] = math.exp(-1/(2*d_s**2) * d_square)
    return mask


def butterworth_low_pass_filter(shape, n=4, d_s=0.25, d_t=0.25):
    """
    Compute the butterworth low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        n: order of the filter, larger n ~ ideal, smaller n ~ gaussian
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[..., t,h,w] = 1 / (1 + (d_square / d_s**2)**n)
    return mask


def ideal_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the ideal low pass filter mask.

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask
    for t in range(T):
        for h in range(H):
            for w in range(W):
                d_square = (((d_s/d_t)*(2*t/T-1))**2 + (2*h/H-1)**2 + (2*w/W-1)**2)
                mask[..., t,h,w] =  1 if d_square <= d_s*2 else 0
    return mask


def box_low_pass_filter(shape, d_s=0.25, d_t=0.25):
    """
    Compute the ideal low pass filter mask (approximated version).

    Args:
        shape: shape of the filter (volume)
        d_s: normalized stop frequency for spatial dimensions (0.0-1.0)
        d_t: normalized stop frequency for temporal dimension (0.0-1.0)
    """
    T, H, W = shape[-3], shape[-2], shape[-1]
    mask = torch.zeros(shape)
    if d_s==0 or d_t==0:
        return mask

    threshold_s = round(int(H // 2) * d_s)
    threshold_t = round(T // 2 * d_t)

    cframe, crow, ccol = T // 2, H // 2, W //2
    mask[..., cframe - threshold_t:cframe + threshold_t, crow - threshold_s:crow + threshold_s, ccol - threshold_s:ccol + threshold_s] = 1.0

    return mask