File size: 8,198 Bytes
3c096a1
f91119a
3c096a1
 
3adee15
 
 
f91119a
 
fb2d9f3
1b39655
fb2d9f3
f91119a
 
fb2d9f3
 
91fac5d
 
 
 
fb2d9f3
f91119a
1b8902c
91fac5d
4d8af09
72763fe
91fac5d
c8dda36
3adee15
 
c9daaf2
 
 
 
91fac5d
 
4d8af09
c9daaf2
91fac5d
b39a2ed
c9daaf2
 
 
fa93a9b
3adee15
 
 
 
f91119a
 
 
c9daaf2
 
 
 
 
 
 
 
 
 
 
 
 
25af746
c9daaf2
91fac5d
f91119a
c9daaf2
 
 
 
 
 
 
5d4e5d9
c9daaf2
 
 
5d4e5d9
c9daaf2
 
21f92ab
c9daaf2
91fac5d
3adee15
f91119a
3adee15
 
 
 
b509c71
6081587
3adee15
 
 
385934a
3adee15
 
2cd1cf6
c9daaf2
2cd1cf6
cb1f3e2
2cd1cf6
 
 
6081587
 
c9daaf2
2cd1cf6
cb1f3e2
2cd1cf6
 
6cc7e15
6081587
 
c9daaf2
3adee15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
401a78c
3adee15
 
d27e139
3adee15
bae6fd5
 
3adee15
 
c9daaf2
cb1f3e2
3adee15
c9daaf2
d27e139
 
6cc7e15
3adee15
d27e139
3adee15
 
 
 
 
 
 
 
 
 
b509c71
6081587
b8f1e2b
3adee15
6081587
c9daaf2
3adee15
 
 
 
 
 
 
 
 
 
fd2f5c4
61d7fe2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr

import spaces

import torch

from free_lunch_utils import register_free_upblock2d, register_free_crossattn_upblock2d
from pipeline_freescale import StableDiffusionXLPipeline
from pipeline_freescale_turbo import StableDiffusionXLPipeline_Turbo

dtype = torch.float16
device = "cuda" if torch.cuda.is_available() else "cpu"
model_ckpt = "stabilityai/stable-diffusion-xl-base-1.0"
model_ckpt_turbo = "stabilityai/sdxl-turbo"
pipe = StableDiffusionXLPipeline.from_pretrained(model_ckpt, torch_dtype=dtype).to(device)
pipe_turbo = StableDiffusionXLPipeline_Turbo.from_pretrained(model_ckpt_turbo, torch_dtype=dtype).to(device)
register_free_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
register_free_crossattn_upblock2d(pipe, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
register_free_upblock2d(pipe_turbo, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
register_free_crossattn_upblock2d(pipe_turbo, b1=1.1, b2=1.2, s1=0.6, s2=0.4)
torch.cuda.empty_cache()

@spaces.GPU(duration=120)
def infer_gpu_part(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps):
    generator = torch.Generator(device='cuda')
    generator = generator.manual_seed(seed)

    result = pipe(prompt, negative_prompt=negative_prompt, generator=generator,
                num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
                resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
                restart_steps=restart_steps,
                ).images[0]
    return result

@spaces.GPU(duration=30)
def infer_gpu_part_turbo(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps):
    generator = torch.Generator(device='cuda')
    generator = generator.manual_seed(seed)

    result = pipe_turbo(prompt, negative_prompt=negative_prompt, generator=generator,
                num_inference_steps=ddim_steps, guidance_scale=guidance_scale,
                resolutions_list=resolutions_list, fast_mode=fast_mode, cosine_scale=cosine_scale,
                restart_steps=restart_steps,
                ).images[0]
    return result

def infer(prompt, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt):

    print(prompt)
    print(negative_prompt)

    disable_turbo = 'Disable Turbo' in options

    if disable_turbo:
        fast_mode = True
        if output_size == "2048 x 2048":
            resolutions_list = [[1024, 1024],
                                [2048, 2048]]
        elif output_size == "1024 x 2048":
            resolutions_list = [[512, 1024],
                                [1024, 2048]]
        elif output_size == "2048 x 1024":
            resolutions_list = [[1024, 512],
                                [2048, 1024]]
        restart_steps = [int(ddim_steps * 0.3)]

        result = infer_gpu_part(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps)

    else:
        fast_mode = False
        if output_size == "2048 x 2048":
            resolutions_list = [[512, 512],
                                [1024, 1024],
                                [2048, 2048]]
        elif output_size == "1024 x 2048":
            resolutions_list = [[256, 512],
                                [512, 1024],
                                [1024, 2048]]
        elif output_size == "2048 x 1024":
            resolutions_list = [[512, 256],
                                [1024, 512],
                                [2048, 1024]]
        restart_steps = [int(ddim_steps * 0.5)] * 2

        result = infer_gpu_part_turbo(seed, prompt, negative_prompt, ddim_steps, guidance_scale, resolutions_list, fast_mode, cosine_scale, restart_steps)

    return result


examples = [
    ["A cute and adorable fluffy puppy wearing a witch hat in a Halloween autumn evening forest, falling autumn leaves, brown acorns on the ground, Halloween pumpkins spiderwebs, bats, and a witch’s broom.",],
    ["Brunette pilot girl in a snowstorm, full body, moody lighting, intricate details, depth of field, outdoors, Fujifilm XT3, RAW, 8K UHD, film grain, Unreal Engine 5, ray tracing.",],
    ["A panda walking and munching bamboo in a bamboo forest.",],
]

css = """
#col-container {max-width: 768px; margin-left: auto; margin-right: auto;}
"""

def mode_update(options):
    if 'Disable Turbo' in options:
        return [gr.Slider(minimum=5,
                        maximum=60,
                        value=50),
                gr.Slider(minimum=1.0,
                        maximum=20.0,
                        value=7.5),
                gr.Row(visible=True)]
    else:
        return [gr.Slider(minimum=2,
                        maximum=6,
                        value=4),
                gr.Slider(minimum=0.0,
                        maximum=1.0,
                        value=0.0),
                gr.Row(visible=False)]

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(
            """
            <h1 style="text-align: center;">FreeScale (unleash the resolution of SDXL)</h1>
            <p style="text-align: center;">
            FreeScale: Unleashing the Resolution of Diffusion Models via Tuning-Free Scale Fusion
            </p>
            <p style="text-align: center;">
            <a href="https://arxiv.org/abs/2412.09626" target="_blank"><b>[arXiv]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
            <a href="http://haonanqiu.com/projects/FreeScale.html" target="_blank"><b>[Project Page]</b></a> &nbsp;&nbsp;&nbsp;&nbsp;
            <a href="https://github.com/ali-vilab/FreeScale" target="_blank"><b>[Code]</b></a>
            </p>         
            """
        )

        prompt_in = gr.Textbox(label="Prompt", placeholder="A panda walking and munching bamboo in a bamboo forest.")

        with gr.Row():
            with gr.Accordion('Advanced Settings', open=False):
                with gr.Row():
                    output_size = gr.Dropdown(["2048 x 2048", "1024 x 2048", "2048 x 1024"], value="2048 x 2048", label="Output Size (H x W)", info="Due to GPU constraints, run the demo locally for higher resolutions.")
                    options = gr.CheckboxGroup(['Disable Turbo'], label="Options", info="Disable Turbo will get better results but cost more time.")
                with gr.Row():
                    ddim_steps = gr.Slider(label='DDIM Steps',
                             minimum=2,
                             maximum=6,
                             step=1,
                             value=4)
                    guidance_scale = gr.Slider(label='Guidance Scale (Disabled in Turbo)',
                             minimum=0.0,
                             maximum=1.0,
                             step=0.1,
                             value=0.0)
                with gr.Row():
                    cosine_scale = gr.Slider(label='Cosine Scale',
                             minimum=0,
                             maximum=10,
                             step=0.1,
                             value=2.0)
                    seed = gr.Slider(label='Random Seed',
                             minimum=0,
                             maximum=10000,
                             step=1,
                             value=111)
                with gr.Row() as row_neg:
                    negative_prompt = gr.Textbox(label='Negative Prompt', value='blurry, ugly, duplicate, poorly drawn, deformed, mosaic', visible=False)

        options.change(mode_update, options, [ddim_steps, guidance_scale, row_neg])

        submit_btn = gr.Button("Generate", variant='primary')
        image_result = gr.Image(label="Image Output")

        gr.Examples(examples=examples, inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt])

    submit_btn.click(fn=infer,
            inputs=[prompt_in, output_size, ddim_steps, guidance_scale, cosine_scale, seed, options, negative_prompt],
            outputs=[image_result],
            api_name="freescalehf")

if __name__ == "__main__":
    demo.queue(max_size=8).launch()