Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import os
|
3 |
+
from dotenv import load_dotenv
|
4 |
+
from groq import Groq
|
5 |
+
import PyPDF2
|
6 |
+
|
7 |
+
# Load environment variables
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
# Initialize Groq client
|
11 |
+
client = Groq(
|
12 |
+
api_key=os.getenv("GROQ_API_KEY"),
|
13 |
+
)
|
14 |
+
|
15 |
+
def extract_text_from_pdf(file):
|
16 |
+
reader = PyPDF2.PdfReader(file)
|
17 |
+
text = ''
|
18 |
+
for page_num in range(len(reader.pages)):
|
19 |
+
page = reader.pages[page_num]
|
20 |
+
text += page.extract_text()
|
21 |
+
return text
|
22 |
+
|
23 |
+
def analyze_job_description(job_description):
|
24 |
+
prompt = f"Here is a job description:\n\n{job_description}\n\nPlease extract the key requirements and skills needed for this position."
|
25 |
+
chat_completion = client.chat.completions.create(
|
26 |
+
messages=[
|
27 |
+
{
|
28 |
+
"role": "user",
|
29 |
+
"content": prompt,
|
30 |
+
}
|
31 |
+
],
|
32 |
+
model="llama3-8b-8192",
|
33 |
+
)
|
34 |
+
return chat_completion.choices[0].message.content
|
35 |
+
|
36 |
+
def get_resume_feedback(content, job_requirements):
|
37 |
+
prompt = f"Here is the content of the resume:\n\n{content}\n\nBased on the following job requirements and skills:\n\n{job_requirements}\n\nPlease provide suggestions for improving this resume, including keyword optimization and ATS compatibility checks."
|
38 |
+
chat_completion = client.chat.completions.create(
|
39 |
+
messages=[
|
40 |
+
{
|
41 |
+
"role": "user",
|
42 |
+
"content": prompt,
|
43 |
+
}
|
44 |
+
],
|
45 |
+
model="llama3-8b-8192",
|
46 |
+
)
|
47 |
+
return chat_completion.choices[0].message.content
|
48 |
+
|
49 |
+
def score_resume_against_job_description(resume_text, job_description_text):
|
50 |
+
resume_words = set(resume_text.lower().split())
|
51 |
+
job_description_words = set(job_description_text.lower().split())
|
52 |
+
common_words = resume_words.intersection(job_description_words)
|
53 |
+
score = len(common_words) / len(job_description_words) * 100
|
54 |
+
return score
|
55 |
+
|
56 |
+
def chat_with_llm(resume_text, job_description_text, user_question):
|
57 |
+
prompt = f"Here is the content of the resume:\n\n{resume_text}\n\nHere is the job description:\n\n{job_description_text}\n\nQuestion: {user_question}\n\nAnswer:"
|
58 |
+
chat_completion = client.chat.completions.create(
|
59 |
+
messages=[
|
60 |
+
{
|
61 |
+
"role": "user",
|
62 |
+
"content": prompt,
|
63 |
+
}
|
64 |
+
],
|
65 |
+
model="llama3-8b-8192",
|
66 |
+
)
|
67 |
+
return chat_completion.choices[0].message.content
|
68 |
+
|
69 |
+
def main():
|
70 |
+
st.title("Resume Upgrader with ATS, Job Description Matching, and Chat Capabilities")
|
71 |
+
|
72 |
+
# Upload resume files
|
73 |
+
uploaded_resumes = st.file_uploader("Upload your resume (PDF)", type=["pdf"], accept_multiple_files=True)
|
74 |
+
|
75 |
+
# Initialize job_description_text to avoid UnboundLocalError
|
76 |
+
job_description_text = None
|
77 |
+
|
78 |
+
# Upload or input job description
|
79 |
+
job_description_option = st.radio("How would you like to provide the job description?", ("Upload PDF", "Enter Text"))
|
80 |
+
|
81 |
+
if job_description_option == "Upload PDF":
|
82 |
+
job_description_file = st.file_uploader("Upload job description (PDF)", type=["pdf"])
|
83 |
+
if job_description_file:
|
84 |
+
job_description_text = extract_text_from_pdf(job_description_file)
|
85 |
+
else:
|
86 |
+
job_description_text = st.text_area("Enter job description")
|
87 |
+
|
88 |
+
if uploaded_resumes and job_description_text:
|
89 |
+
st.write("Uploaded Resumes:")
|
90 |
+
for uploaded_file in uploaded_resumes:
|
91 |
+
st.write(uploaded_file.name)
|
92 |
+
|
93 |
+
if job_description_option == "Upload PDF":
|
94 |
+
st.write("Uploaded Job Description:")
|
95 |
+
st.write(job_description_file.name)
|
96 |
+
else:
|
97 |
+
st.write("Entered Job Description:")
|
98 |
+
|
99 |
+
# Extract text from all uploaded resumes
|
100 |
+
combined_resume_text = ""
|
101 |
+
for uploaded_file in uploaded_resumes:
|
102 |
+
combined_resume_text += extract_text_from_pdf(uploaded_file) + "\n\n"
|
103 |
+
|
104 |
+
st.write("All documents uploaded and text extracted successfully!")
|
105 |
+
|
106 |
+
# Analyze the job description
|
107 |
+
job_requirements = analyze_job_description(job_description_text)
|
108 |
+
st.write("Extracted Job Requirements and Skills:")
|
109 |
+
st.write(job_requirements)
|
110 |
+
|
111 |
+
# Initialize session state for resume feedback history
|
112 |
+
if "resume_feedback" not in st.session_state:
|
113 |
+
st.session_state.resume_feedback = []
|
114 |
+
|
115 |
+
# Provide options for the user
|
116 |
+
option = st.selectbox("What would you like to do?", ("Get Feedback and ATS Check", "Get Score", "Chat"))
|
117 |
+
|
118 |
+
if option == "Get Feedback and ATS Check":
|
119 |
+
if st.button("Get Feedback"):
|
120 |
+
feedback = get_resume_feedback(combined_resume_text, job_requirements)
|
121 |
+
st.session_state.resume_feedback.append((feedback, None, None))
|
122 |
+
|
123 |
+
elif option == "Get Score":
|
124 |
+
if st.button("Get Score"):
|
125 |
+
score = score_resume_against_job_description(combined_resume_text, job_description_text)
|
126 |
+
st.session_state.resume_feedback.append((None, None, score))
|
127 |
+
|
128 |
+
elif option == "Chat":
|
129 |
+
if "chat_history" not in st.session_state:
|
130 |
+
st.session_state.chat_history = []
|
131 |
+
|
132 |
+
user_question = st.text_input("Enter your question:")
|
133 |
+
|
134 |
+
if st.button("Ask"):
|
135 |
+
if user_question:
|
136 |
+
response = chat_with_llm(combined_resume_text, job_description_text, user_question)
|
137 |
+
st.session_state.chat_history.append((user_question, response))
|
138 |
+
user_question = "" # Clear input field
|
139 |
+
|
140 |
+
if st.session_state.chat_history:
|
141 |
+
st.subheader("Chat History")
|
142 |
+
for i, (q, a) in enumerate(st.session_state.chat_history):
|
143 |
+
st.write(f"**Q{i+1}:** {q}")
|
144 |
+
st.write(f"**A{i+1}:** {a}")
|
145 |
+
|
146 |
+
# Display feedback history
|
147 |
+
if st.session_state.resume_feedback:
|
148 |
+
st.subheader("Resume Improvement Suggestions and Scores")
|
149 |
+
for i, (feedback, ats_feedback, score) in enumerate(st.session_state.resume_feedback):
|
150 |
+
if feedback:
|
151 |
+
st.write(f"**Feedback for Resume {i+1}:**")
|
152 |
+
st.write(feedback)
|
153 |
+
if score is not None:
|
154 |
+
st.write(f"**Match Score for Resume {i+1}:** {score:.2f}%")
|
155 |
+
|
156 |
+
if __name__ == "__main__":
|
157 |
+
main()
|