import math from pprint import pformat from typing import Tuple, List, Dict, Union import torch.nn import infinity.utils.dist as dist def lr_wd_annealing(sche_type: str, optimizer, peak_lr, wd, wd_end, cur_it, wp_it, max_it, wp0=0.005, wpe=0.001): """Decay the learning rate with half-cycle cosine after warmup""" wp_it = round(wp_it) if cur_it < wp_it: cur_lr = wp0 + (1-wp0) * cur_it / wp_it else: pasd = (cur_it - wp_it) / (max_it-1 - wp_it) # [0, 1] rest = 1 - pasd # [1, 0] if sche_type == 'cos': cur_lr = wpe + (1-wpe) * (0.5 + 0.5 * math.cos(math.pi * pasd)) elif sche_type == 'lin': T = 0.15; max_rest = 1-T if pasd < T: cur_lr = 1 else: cur_lr = wpe + (1-wpe) * rest / max_rest # 1 to wpe elif sche_type == 'lin0': T = 0.05; max_rest = 1-T if pasd < T: cur_lr = 1 else: cur_lr = wpe + (1-wpe) * rest / max_rest elif sche_type == 'lin00': cur_lr = wpe + (1-wpe) * rest elif sche_type.startswith('lin'): T = float(sche_type[3:]); max_rest = 1-T wpe_mid = wpe + (1-wpe) * max_rest wpe_mid = (1 + wpe_mid) / 2 if pasd < T: cur_lr = 1 + (wpe_mid-1) * pasd / T else: cur_lr = wpe + (wpe_mid-wpe) * rest / max_rest elif sche_type == 'exp': T = 0.15; max_rest = 1-T if pasd < T: cur_lr = 1 else: expo = (pasd-T) / max_rest * math.log(wpe) cur_lr = math.exp(expo) else: raise NotImplementedError(f'unknown sche_type {sche_type}') cur_lr *= peak_lr pasd = cur_it / (max_it-1) cur_wd = wd_end + (wd - wd_end) * (0.5 + 0.5 * math.cos(math.pi * pasd)) inf = 1e6 min_lr, max_lr = inf, -1 min_wd, max_wd = inf, -1 for param_group in optimizer.param_groups: param_group['lr'] = cur_lr * param_group.get('lr_sc', 1) # 'lr_sc' could be assigned max_lr = max(max_lr, param_group['lr']) min_lr = min(min_lr, param_group['lr']) param_group['weight_decay'] = cur_wd * param_group.get('wd_sc', 1) max_wd = max(max_wd, param_group['weight_decay']) if param_group['weight_decay'] > 0: min_wd = min(min_wd, param_group['weight_decay']) if min_lr == inf: min_lr = -1 if min_wd == inf: min_wd = -1 return min_lr, max_lr, min_wd, max_wd def filter_params(model, ndim_dict, nowd_keys=(), lr_scale=0.0) -> Tuple[ List[str], List[torch.nn.Parameter], List[Dict[str, Union[torch.nn.Parameter, float]]] ]: with_lr_scale = hasattr(model, 'get_layer_id_and_scale_exp') and 0 < lr_scale <= 1 print(f'[get_param_groups][lr decay] with_lr_scale={with_lr_scale}, lr_scale={lr_scale}') para_groups, para_groups_dbg = {}, {} names, paras = [], [] names_no_grad = [] count, numel = 0, 0 for name, para in model.named_parameters(): name = name.replace('_fsdp_wrapped_module.', '') if not para.requires_grad: names_no_grad.append(name) continue # frozen weights count += 1 numel += para.numel() names.append(name) paras.append(para) if ndim_dict.get(name, 2) == 1 or name.endswith('bias') or any(k in name for k in nowd_keys): cur_wd_sc, group_name = 0., 'ND' # elif any(k in name for k in small_wd_keys): # cur_wd_sc, group_name = small_wd, 'small_decay' else: cur_wd_sc, group_name = 1., 'D' if with_lr_scale: layer_id, scale_exp = model.get_layer_id_and_scale_exp(name) group_name = f'layer{layer_id}_' + group_name cur_lr_sc = lr_scale ** scale_exp dbg = f'[layer {layer_id}][sc = {lr_scale} ** {scale_exp}]' else: cur_lr_sc = 1. dbg = f'[no scale]' if group_name not in para_groups: para_groups[group_name] = {'params': [], 'wd_sc': cur_wd_sc, 'lr_sc': cur_lr_sc} para_groups_dbg[group_name] = {'params': [], 'wd_sc': cur_wd_sc, 'lr_sc': dbg} para_groups[group_name]['params'].append(para) para_groups_dbg[group_name]['params'].append(name) for g in para_groups_dbg.values(): g['params'] = pformat(', '.join(g['params']), width=200) print(f'[get_param_groups] param_groups = \n{pformat(para_groups_dbg, indent=2, width=240)}\n') for rk in range(dist.get_world_size()): dist.barrier() if dist.get_rank() == rk: print(f'[get_param_groups][rank{dist.get_rank()}] {type(model).__name__=} {count=}, {numel=}', flush=True, force=True) print('') assert len(names_no_grad) == 0, f'[get_param_groups] names_no_grad = \n{pformat(names_no_grad, indent=2, width=240)}\n' del ndim_dict return names, paras, list(para_groups.values()) def plot(): import matplotlib.pyplot as plt import torch.nn as nn from torch.optim import SGD # for sche in ('lin', 'lin0', 'lin00', 'lin0.5', 'lin0.75'): for sche in ('lin0', ): op = SGD(nn.Linear(3, 4).parameters(), lr=1e-3) it, lr = [], [] iters = 500 wp_it, max_it = 1 * iters, 10 * iters for cur_it in range(max_it): it.append(cur_it) lr.append(lr_wd_annealing(sche, op, 0.1, 1e-5, 1e-5, cur_it, wp_it, max_it, wpe=0.3)[0]) plt.figure() plt.title(sche) plt.plot(it, lr, 'b', label=sche) plt.xlabel('it'), plt.ylabel('lr') plt.legend() plt.savefig('lr.jpg') if __name__ == '__main__': plot()