import re import torch import os import traceback import numpy as np from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, T5EncoderModel import ftfy import html from bs4 import BeautifulSoup import urllib.parse as ul class T5Embedder: available_models = ['t5-v1_1-xxl'] bad_punct_regex = re.compile(r'['+'#®•©™&@·º½¾¿¡§~'+'\)'+'\('+'\]'+'\['+'\}'+'\{'+'\|'+'\\'+'\/'+'\*' + r']{1,}') # noqa def __init__(self, device, dir_or_name='t5-v1_1-xxl', *, local_cache=False, cache_dir=None, hf_token=None, use_text_preprocessing=True, t5_model_kwargs=None, torch_dtype=torch.bfloat16, use_offload_folder=None, model_max_length=512, padding="max_length", clean_caption_func_name="clean_caption"): self.device = torch.device(device) self.torch_dtype = torch_dtype if t5_model_kwargs is None: t5_model_kwargs = {'low_cpu_mem_usage': True, 'torch_dtype': self.torch_dtype} if use_offload_folder is not None: t5_model_kwargs['offload_folder'] = use_offload_folder t5_model_kwargs['device_map'] = { 'shared': self.device, 'encoder.embed_tokens': self.device, 'encoder.block.0': self.device, 'encoder.block.1': self.device, 'encoder.block.2': self.device, 'encoder.block.3': self.device, 'encoder.block.4': self.device, 'encoder.block.5': self.device, 'encoder.block.6': self.device, 'encoder.block.7': self.device, 'encoder.block.8': self.device, 'encoder.block.9': self.device, 'encoder.block.10': self.device, 'encoder.block.11': self.device, 'encoder.block.12': 'disk', 'encoder.block.13': 'disk', 'encoder.block.14': 'disk', 'encoder.block.15': 'disk', 'encoder.block.16': 'disk', 'encoder.block.17': 'disk', 'encoder.block.18': 'disk', 'encoder.block.19': 'disk', 'encoder.block.20': 'disk', 'encoder.block.21': 'disk', 'encoder.block.22': 'disk', 'encoder.block.23': 'disk', 'encoder.final_layer_norm': 'disk', 'encoder.dropout': 'disk', } else: t5_model_kwargs['device_map'] = {'shared': self.device, 'encoder': self.device} self.use_text_preprocessing = use_text_preprocessing self.hf_token = hf_token self.cache_dir = cache_dir or os.path.expanduser('~/.cache/IF_') self.dir_or_name = dir_or_name tokenizer_path, path = dir_or_name, dir_or_name if local_cache: cache_dir = os.path.join(self.cache_dir, dir_or_name) tokenizer_path, path = cache_dir, cache_dir elif dir_or_name in self.available_models: cache_dir = os.path.join(self.cache_dir, dir_or_name) for filename in [ 'config.json', 'special_tokens_map.json', 'spiece.model', 'tokenizer_config.json', 'pytorch_model.bin.index.json', 'pytorch_model-00001-of-00002.bin', 'pytorch_model-00002-of-00002.bin' ]: hf_hub_download(repo_id=f'DeepFloyd/{dir_or_name}', filename=filename, cache_dir=cache_dir, force_filename=filename, token=self.hf_token) tokenizer_path, path = cache_dir, cache_dir else: cache_dir = os.path.join(self.cache_dir, 't5-v1_1-xxl') for filename in [ 'config.json', 'special_tokens_map.json', 'spiece.model', 'tokenizer_config.json', ]: hf_hub_download(repo_id='DeepFloyd/t5-v1_1-xxl', filename=filename, cache_dir=cache_dir, force_filename=filename, token=self.hf_token) tokenizer_path = cache_dir print(f"Loading T5 from {tokenizer_path}") self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_path) self.model = T5EncoderModel.from_pretrained(path, **t5_model_kwargs).eval() self.model_max_length = model_max_length self.padding = padding self.clean_caption_func = self.__getattribute__(clean_caption_func_name) @torch.no_grad() def get_text_embeddings(self, texts): import time start_time = time.time() texts = [self.text_preprocessing(text) for text in texts] # print("text_preprocessing: ", time.time() - start_time) text_tokens_and_mask = self.tokenizer( texts, max_length=self.model_max_length, padding=self.padding, truncation=True, return_attention_mask=True, add_special_tokens=True, return_tensors='pt' ) # print("tokenizer: ", time.time() - start_time) text_tokens_and_mask['input_ids'] = text_tokens_and_mask['input_ids'].to(self.device) text_tokens_and_mask['attention_mask'] = text_tokens_and_mask['attention_mask'].to(self.device) with torch.no_grad(): text_encoder_embs = self.model( input_ids=text_tokens_and_mask['input_ids'], attention_mask=text_tokens_and_mask['attention_mask'], )['last_hidden_state'].detach() # print("model: ", time.time() - start_time) return text_encoder_embs, text_tokens_and_mask['attention_mask'], text_tokens_and_mask['input_ids'], texts def text_preprocessing(self, text): if self.use_text_preprocessing: try: # The exact text cleaning as was in the training stage: text = self.clean_caption_func(text) text = self.clean_caption_func(text) return text except Exception as e: print(f"Error in text preprocessing: {e} with text: {text}") print(traceback.format_exc()) return text else: return text.lower().strip() @staticmethod def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def clean_caption(self, caption): caption = str(caption) caption = ul.unquote_plus(caption) caption = caption.strip().lower() caption = re.sub('', 'person', caption) # urls: caption = re.sub( r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', # noqa '', caption) # regex for urls caption = re.sub( r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', # noqa '', caption) # regex for urls # html: try: caption = BeautifulSoup(caption, features='html.parser').text except Exception as e: print(f"Error parsing caption:{caption} with html.parser: {e}") # @ caption = re.sub(r'@[\w\d]+\b', '', caption) # 31C0—31EF CJK Strokes # 31F0—31FF Katakana Phonetic Extensions # 3200—32FF Enclosed CJK Letters and Months # 3300—33FF CJK Compatibility # 3400—4DBF CJK Unified Ideographs Extension A # 4DC0—4DFF Yijing Hexagram Symbols # 4E00—9FFF CJK Unified Ideographs caption = re.sub(r'[\u31c0-\u31ef]+', '', caption) caption = re.sub(r'[\u31f0-\u31ff]+', '', caption) caption = re.sub(r'[\u3200-\u32ff]+', '', caption) caption = re.sub(r'[\u3300-\u33ff]+', '', caption) caption = re.sub(r'[\u3400-\u4dbf]+', '', caption) caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption) caption = re.sub(r'[\u4e00-\u9fff]+', '', caption) ####################################################### # все виды тире / all types of dash --> "-" caption = re.sub( r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+', # noqa '-', caption) # кавычки к одному стандарту caption = re.sub(r'[`´«»“”¨]', '"', caption) caption = re.sub(r'[‘’]', "'", caption) # " caption = re.sub(r'"?', '', caption) # & caption = re.sub(r'&', '', caption) # ip adresses: caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption) # article ids: caption = re.sub(r'\d:\d\d\s+$', '', caption) # \n caption = re.sub(r'\\n', ' ', caption) # "#123" caption = re.sub(r'#\d{1,3}\b', '', caption) # "#12345.." caption = re.sub(r'#\d{5,}\b', '', caption) # "123456.." caption = re.sub(r'\b\d{6,}\b', '', caption) # filenames: caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) # caption = re.sub(r'[\"\']{2,}', r'"', caption) # """AUSVERKAUFT""" caption = re.sub(r'[\.]{2,}', r' ', caption) # """AUSVERKAUFT""" caption = re.sub(self.bad_punct_regex, r' ', caption) # ***AUSVERKAUFT***, #AUSVERKAUFT caption = re.sub(r'\s+\.\s+', r' ', caption) # " . " # this-is-my-cute-cat / this_is_my_cute_cat regex2 = re.compile(r'(?:\-|\_)') if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, ' ', caption) caption = self.basic_clean(caption) caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption) # jc6640 caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption) # jc6640vc caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption) # 6640vc231 caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption) caption = re.sub(r'(free\s)?download(\sfree)?', '', caption) caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption) caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption) caption = re.sub(r'\bpage\s+\d+\b', '', caption) caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption) # j2d1a2a... caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption) caption = re.sub(r'\b\s+\:\s+', r': ', caption) caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption) caption = re.sub(r'\s+', ' ', caption) caption.strip() caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption) caption = re.sub(r'^[\'\_,\-\:;]', r'', caption) caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption) caption = re.sub(r'^\.\S+$', '', caption) return caption.strip() def clean_caption_simplify(self, caption): # 将 caption 转换为字符串 caption = str(caption) # 解码 URL 编码的字符串 caption = ul.unquote_plus(caption) # 去除首尾空格并转换为小写 caption = caption.strip().lower() # 将 '' 替换为 'person' caption = re.sub('', 'person', caption) # 移除 URL caption = re.sub( r'\b((?:https?:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', '', caption) # 匹配以 http:// 或 https:// 开头的 URL caption = re.sub( r'\b((?:www:(?:\/{1,3}|[a-zA-Z0-9%])|[a-zA-Z0-9.\-]+[.](?:com|co|ru|net|org|edu|gov|it)[\w/-]*\b\/?(?!@)))', '', caption) # 匹配以 www. 开头的 URL # 解析 HTML 并删除 HTML 标签 caption = BeautifulSoup(caption, features='html.parser').text # 移除 @nickname 标签 caption = re.sub(r'@[\w\d]+\b', '', caption) # 移除特定 Unicode 范围的字符:CJK 相关字符 caption = re.sub(r'[\u31c0-\u31ef]+', '', caption) # CJK 笔划 caption = re.sub(r'[\u31f0-\u31ff]+', '', caption) # 片假名语音扩展 caption = re.sub(r'[\u3200-\u32ff]+', '', caption) # 圆括号中的 CJK 字母和月份 caption = re.sub(r'[\u3300-\u33ff]+', '', caption) # CJK 兼容性 caption = re.sub(r'[\u3400-\u4dbf]+', '', caption) # CJK 统一表意符号扩展 A caption = re.sub(r'[\u4dc0-\u4dff]+', '', caption) # 易经卦象符号 caption = re.sub(r'[\u4e00-\u9fff]+', '', caption) # CJK 统一表意符号 # 所有类型的破折号替换为 "-" caption = re.sub( r'[\u002D\u058A\u05BE\u1400\u1806\u2010-\u2015\u2E17\u2E1A\u2E3A\u2E3B\u2E40\u301C\u3030\u30A0\uFE31\uFE32\uFE58\uFE63\uFF0D]+', '-', caption) # 匹配各种 Unicode 破折号 # 统一不同类型的引号 caption = re.sub(r'[`´«»“”¨]', '"', caption) # 将各种引号替换为标准引号 caption = re.sub(r'[‘’]', "'", caption) # 将左单引号和右单引号替换为标准单引号 # 移除 " 和 & caption = re.sub(r'"?', '', caption) # 移除 HTML 实体 " caption = re.sub(r'&', '', caption) # 移除 HTML 实体 & # 移除 IP 地址 caption = re.sub(r'\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}', ' ', caption) # 匹配 IPv4 地址 # 移除文章 ID 格式 caption = re.sub(r'\d:\d\d\s+$', '', caption) # 匹配类似 '1:23 ' 的格式 # 移除 \n 转义字符 caption = re.sub(r'\\n', ' ', caption) # 移除特定格式的标签 # caption = re.sub(r'#\d{1,3}\b', '', caption) # #123 移除 # 加 1 到 3 位数字的标签 # caption = re.sub(r'#\d{5,}\b', '', caption) # #12345.. 移除 # 加 5 位或以上数字的标签 # caption = re.sub(r'\b\d{6,}\b', '', caption) # 123456.. 移除 6 位或以上的纯数字 # 移除文件名 caption = re.sub(r'[\S]+\.(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)', '', caption) # 匹配图片和视频文件,匹配完整的文件名,包括文件名本身和扩展名。 # 简化多重引号和点 caption = re.sub(r'[\"\']{2,}', r'"', caption) # 连续的双引号替换为一个双引号 caption = re.sub(r'[\.]{2,}', r' ', caption) # 连续的点替换为空格 # 使用通用标点正则表达式清理无效标点 caption = re.sub(self.bad_punct_regex, r' ', caption) # 自定义的无效标点正则表达式 caption = re.sub(r'\s+\.\s+', r' ', caption) # 移除空格和点 # 过滤带有太多破折号或下划线的文本 regex2 = re.compile(r'(?:\-|\_)') if len(re.findall(regex2, caption)) > 3: caption = re.sub(regex2, ' ', caption) # 基本清理 caption = self.basic_clean(caption) # 移除特定格式的短字符串 # caption = re.sub(r'\b[a-zA-Z]{1,3}\d{3,15}\b', '', caption) # 匹配三个字母以下加三个数字以上的字符串 # caption = re.sub(r'\b[a-zA-Z]+\d+[a-zA-Z]+\b', '', caption) # 匹配字母数字混合的字符串 # caption = re.sub(r'\b\d+[a-zA-Z]+\d+\b', '', caption) # 匹配数字字母混合的字符串 # 移除特定的广告或指令性短语 # caption = re.sub(r'(worldwide\s+)?(free\s+)?shipping', '', caption) # 匹配 'worldwide free shipping', 'free shipping' # caption = re.sub(r'(free\s)?download(\sfree)?', '', caption) # 匹配 'free download', 'download free' # caption = re.sub(r'\bclick\b\s(?:for|on)\s\w+', '', caption) # 匹配 'click for ...' 或 'click on ...' # caption = re.sub(r'\b(?:png|jpg|jpeg|bmp|webp|eps|pdf|apk|mp4)(\simage[s]?)?', '', caption) # 匹配文件扩展名,匹配独立的扩展名或扩展名后可能跟随的特定词汇的场景 # caption = re.sub(r'\bpage\s+\d+\b', '', caption) # 匹配 'page 123' # 移除复杂模式的字符串 # caption = re.sub(r'\b\d*[a-zA-Z]+\d+[a-zA-Z]+\d+[a-zA-Z\d]*\b', r' ', caption) # 123A456B789 # 移除特定的矩形标识符 caption = re.sub(r'\b\d+\.?\d*[xх×]\d+\.?\d*\b', '', caption) # 修复多余的空白和标点 caption = re.sub(r'\b\s+\:\s+', r': ', caption) caption = re.sub(r'(\D[,\./])\b', r'\1 ', caption) caption = re.sub(r'\s+', ' ', caption) # 去除首尾的多余字符 caption.strip() caption = re.sub(r'^[\"\']([\w\W]+)[\"\']$', r'\1', caption) caption = re.sub(r'^[\'\_,\-\:;]', r'', caption) caption = re.sub(r'[\'\_,\-\:\-\+]$', r'', caption) caption = re.sub(r'^\.\S+$', '', caption) return caption.strip()