Spaces:
Running
on
Zero
Running
on
Zero
File size: 30,935 Bytes
32287b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 |
"""
Definitions of blocks of VAR transformer model.
"""
import math
import os
from functools import partial
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from timm.models.layers import DropPath, drop_path
from torch.utils.checkpoint import checkpoint
# Import flash_attn's attention
from flash_attn import flash_attn_func # q, k, or v: BLHc, ret: BLHc
from flash_attn import flash_attn_varlen_kvpacked_func # qkv: N3Hc, ret: NHc
from torch.nn.functional import scaled_dot_product_attention as slow_attn # q, k, v: BHLc
# Import flash_attn's fused ops
try:
from flash_attn.ops.layer_norm import dropout_add_layer_norm
from flash_attn.ops.rms_norm import dropout_add_rms_norm
from flash_attn.ops.rms_norm import rms_norm as rms_norm_impl
from flash_attn.ops.fused_dense import fused_mlp_func
flash_fused_op_installed = True
except ImportError:
dropout_add_layer_norm = dropout_add_rms_norm = fused_mlp_func = None
flash_fused_op_installed = False
def rms_norm_impl(x, weight, epsilon):
return (x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True).add_(epsilon))) * weight
def precompute_rope2d_freqs_grid(dim, dynamic_resolution_h_w, rope2d_normalized_by_hw, pad_to_multiplier=1, max_height=2048 // 16, max_width=2048 // 16, base=10000.0, device=None, scaling_factor=1.0):
# split the dimension into half, one for x and one for y
half_dim = dim // 2
inv_freq = 1.0 / (base ** (torch.arange(0, half_dim, 2, dtype=torch.int64).float().to(device) / half_dim)) # namely theta, 1 / (10000^(i/half_dim)), i=0,2,..., half_dim-2
t_height = torch.arange(max_height, device=device, dtype=torch.int64).type_as(inv_freq)
t_width = torch.arange(max_width, device=device, dtype=torch.int64).type_as(inv_freq)
t_height = t_height / scaling_factor
freqs_height = torch.outer(t_height, inv_freq) # (max_height, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2), namely y*theta
t_width = t_width / scaling_factor
freqs_width = torch.outer(t_width, inv_freq) # (max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2), namely x*theta
freqs_grid_map = torch.concat([
freqs_height[:, None, :].expand(-1, max_width, -1), # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2)
freqs_width[None, :, :].expand(max_height, -1, -1), # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d) / 2)
], dim=-1) # (max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d))
freqs_grid_map = torch.stack([torch.cos(freqs_grid_map), torch.sin(freqs_grid_map)], dim=0)
# (2, max_height, max_width, dim / (1 for 1d, 2 for 2d, 3 for 3d))
rope2d_freqs_grid = {}
for h_div_w in dynamic_resolution_h_w:
scale_schedule = dynamic_resolution_h_w[h_div_w]['1M']['scales']
_, ph, pw = scale_schedule[-1]
max_edge_length = freqs_grid_map.shape[1]
if ph >= pw:
uph, upw = max_edge_length, int(max_edge_length / ph * pw)
else:
uph, upw = int(max_edge_length / pw * ph), max_edge_length
rope_cache_list = []
for (_, ph, pw) in scale_schedule:
ph_mul_pw = ph * pw
if rope2d_normalized_by_hw == 1: # downsample
rope_cache = F.interpolate(freqs_grid_map[:, :uph, :upw, :].permute([0,3,1,2]), size=(ph, pw), mode='bilinear', align_corners=True)
rope_cache = rope_cache.permute([0,2,3,1]) # (2, ph, pw, half_head_dim)
elif rope2d_normalized_by_hw == 2: # star stylee
_, uph, upw = scale_schedule[-1]
indices = torch.stack([
(torch.arange(ph) * (uph / ph)).reshape(ph, 1).expand(ph, pw),
(torch.arange(pw) * (upw / pw)).reshape(1, pw).expand(ph, pw),
], dim=-1).round().int() # (ph, pw, 2)
indices = indices.reshape(-1, 2) # (ph*pw, 2)
rope_cache = freqs_grid_map[:, indices[:,0], indices[:,1], :] # (2, ph*pw, half_head_dim)
rope_cache = rope_cache.reshape(2, ph, pw, -1)
elif rope2d_normalized_by_hw == 0:
rope_cache = freqs_grid_map[:, :ph, :pw, :] # (2, ph, pw, half_head_dim)
else:
raise ValueError(f'Unknown rope2d_normalized_by_hw: {rope2d_normalized_by_hw}')
rope_cache_list.append(rope_cache.reshape(2, ph_mul_pw, -1))
cat_rope_cache = torch.cat(rope_cache_list, 1) # (2, seq_len, half_head_dim)
if cat_rope_cache.shape[1] % pad_to_multiplier:
pad = torch.zeros(2, pad_to_multiplier - cat_rope_cache.shape[1] % pad_to_multiplier, half_dim)
cat_rope_cache = torch.cat([cat_rope_cache, pad], dim=1)
cat_rope_cache = cat_rope_cache[:,None,None,None] # (2, 1, 1, 1, seq_len, half_dim)
for pn in dynamic_resolution_h_w[h_div_w]:
scale_schedule = dynamic_resolution_h_w[h_div_w][pn]['scales']
tmp_scale_schedule = [(1, h, w) for _, h, w in scale_schedule]
rope2d_freqs_grid[str(tuple(tmp_scale_schedule))] = cat_rope_cache
return rope2d_freqs_grid
def apply_rotary_emb(q, k, scale_schedule, rope2d_freqs_grid, pad_to_multiplier, rope2d_normalized_by_hw, scale_ind):
qk = torch.stack((q, k), dim=0) #(2, batch_size, heads, seq_len, head_dim)
device_type = qk.device.type
device_type = device_type if isinstance(device_type, str) and device_type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
seq_len = qk.shape[3]
start = 0
if scale_ind >= 1:
assert len(scale_schedule[0]) == 3
start = np.sum([item[0] * item[1] * item[2] for item in scale_schedule[:scale_ind]])
rope2d_freqs_grid[str(tuple(scale_schedule))] = rope2d_freqs_grid[str(tuple(scale_schedule))].to(qk.device)
assert start+seq_len <= rope2d_freqs_grid[str(tuple(scale_schedule))].shape[4]
rope_cache = rope2d_freqs_grid[str(tuple(scale_schedule))][:, :, :, :, start:start+seq_len] # rope_cache shape: [2, 1, 1, 1, seq_len, half_head_dim]
qk = qk.reshape(*qk.shape[:-1], -1, 2) #(2, batch_size, heads, seq_len, half_head_dim, 2)
qk = torch.stack([
rope_cache[0] * qk[...,0] - rope_cache[1] * qk[...,1],
rope_cache[1] * qk[...,0] + rope_cache[0] * qk[...,1],
], dim=-1) # (2, batch_size, heads, seq_len, half_head_dim, 2), here stack + reshape should not be concate
qk = qk.reshape(*qk.shape[:-2], -1) #(2, batch_size, heads, seq_len, head_dim)
q, k = qk.unbind(dim=0) # (batch_size, heads, seq_len, head_dim)
return q, k
class FastRMSNorm(nn.Module):
def __init__(self, C, eps=1e-6, elementwise_affine=True):
super().__init__()
self.C = C
self.eps = eps
self.elementwise_affine = elementwise_affine
if self.elementwise_affine:
self.weight = nn.Parameter(torch.ones(C))
else:
self.register_buffer('weight', torch.ones(C))
def forward(self, x):
src_type = x.dtype
return rms_norm_impl(x.float(), self.weight, epsilon=self.eps).to(src_type)
def extra_repr(self) -> str:
return f'C={self.C}, eps={self.eps:g}, elementwise_affine={self.elementwise_affine}'
def get_dropout_layer(p):
return nn.Dropout(p, inplace=True) if p > 0 else nn.Identity()
class FFN(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, drop=0., fused_mlp=False):
super().__init__()
self.fused_mlp_func = fused_mlp_func if fused_mlp else None
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features)
self.act = nn.GELU(approximate='tanh')
self.fc2 = nn.Linear(hidden_features, out_features)
self.drop = get_dropout_layer(drop)
self.heuristic = -1
def forward(self, x):
if self.fused_mlp_func is not None:
return self.drop(self.fused_mlp_func(
x=x,
weight1=self.fc1.weight,
weight2=self.fc2.weight,
bias1=self.fc1.bias,
bias2=self.fc2.bias,
activation='gelu_approx',
save_pre_act=self.training,
return_residual=False,
checkpoint_lvl=0,
heuristic=self.heuristic,
process_group=None,
))
else:
return self.drop(self.fc2( self.act(self.fc1(x)) ))
def extra_repr(self) -> str:
return f'fused_mlp={self.fused_mlp_func is not None}'
class FFNSwiGLU(nn.Module):
def __init__(self, in_features, hidden_features, out_features=None, drop=0., fused_mlp=False):
super().__init__()
self.fused_mlp_func = None
hidden_features = round(2 * hidden_features / 3 / 256) * 256
out_features = out_features or in_features
self.fcg = nn.Linear(in_features, hidden_features, bias=False)
self.fc1 = nn.Linear(in_features, hidden_features, bias=False)
self.fc2 = nn.Linear(hidden_features, out_features, bias=False)
self.drop = get_dropout_layer(drop)
def forward(self, x):
return self.drop(self.fc2( F.silu(self.fcg(x), inplace=True).mul_(self.fc1(x)) ))
def extra_repr(self) -> str:
return f'fused_mlp={self.fused_mlp_func is not None}'
class SelfAttention(nn.Module):
def __init__(
self, embed_dim=768, num_heads=12,
proj_drop=0., tau=1, cos_attn=False, customized_flash_attn=True, use_flex_attn=False,
batch_size=2, pad_to_multiplier=1, rope2d_normalized_by_hw=0,
):
"""
:param embed_dim: model's width
:param num_heads: num heads of multi-head attention
:param proj_drop: always 0 for testing
:param tau: always 1
:param cos_attn: always True: during attention, q and k will be L2-normalized and scaled by a head-wise learnable parameter self.scale_mul_1H11
:param customized_flash_attn:
"""
super().__init__()
assert embed_dim % num_heads == 0
self.using_flash = customized_flash_attn
self.num_heads, self.head_dim = num_heads, embed_dim // num_heads
self.tau, self.cos_attn = tau, cos_attn
if self.cos_attn:
self.scale = 1
size = (1, 1, self.num_heads, 1) if self.using_flash else (1, self.num_heads, 1, 1)
# size: 11H1 or 1H11
self.scale_mul_1H11 = nn.Parameter(torch.full(size=size, fill_value=4.0).log(), requires_grad=True)
self.max_scale_mul = torch.log(torch.tensor(100)).item()
else:
self.scale = 1 / math.sqrt(self.head_dim) / self.tau
self.mat_qkv = nn.Linear(embed_dim, embed_dim * 3, bias=False)
self.q_bias, self.v_bias = nn.Parameter(torch.zeros(embed_dim)), nn.Parameter(torch.zeros(embed_dim))
self.register_buffer('zero_k_bias', torch.zeros(embed_dim))
self.proj = nn.Linear(embed_dim, embed_dim)
self.proj_drop = get_dropout_layer(proj_drop)
self.caching = False # kv caching: only used during inference
self.cached_k = None # kv caching: only used during inference
self.cached_v = None # kv caching: only used during inference
self.batch_size = batch_size
self.use_flex_attn = use_flex_attn
self.pad_to_multiplier = pad_to_multiplier
self.rope2d_normalized_by_hw = rope2d_normalized_by_hw
def kv_caching(self, enable: bool): # kv caching: only used during inference
self.caching = enable
self.cached_k = None
self.cached_v = None
# NOTE: attn_bias_or_two_vector is None during inference
def forward(self, x, attn_bias_or_two_vector: Union[torch.Tensor, Tuple[torch.IntTensor, torch.IntTensor]], attn_fn=None, scale_schedule=None, rope2d_freqs_grid=None, scale_ind=0):
"""
:param (fp32) x: shaped (B or batch_size, L or seq_length, C or hidden_dim); if seq-parallel is used, the `L` dim would be shared
:param (fp32) attn_bias_or_two_vector:
if not using_flash:
a block-wise, lower-triangle matrix, like:
[[[[0, -, -, -, -, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, -, -, -, -, -, -, -, -, -],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]]]
where 0 means visible and - means invisible (-inf)
else:
a tuple of two 1-dim int vector (VAR_visible_kvlen, VAR_invisible_qlen)
:return: shaped (B or batch_size, L or seq_length, C or hidden_dim); if seq-parallel is used, the `L` dim would be shared
"""
# x: fp32
B, L, C = x.shape
# qkv: amp, bf16
qkv = F.linear(input=x, weight=self.mat_qkv.weight, bias=torch.cat((self.q_bias, self.zero_k_bias, self.v_bias))).view(B, L, 3, self.num_heads, self.head_dim) # BL3Hc
if self.using_flash: q, k, v = qkv.unbind(dim=2); L_dim = 1 # q or k or v: all are shaped in (B:batch_size, L:seq_len, H:heads, c:head_dim)
else: q, k, v = qkv.permute(2, 0, 3, 1, 4).unbind(dim=0); L_dim = 2 # q or k or v: all are shaped in (B:batch_size, H:heads, L:seq_len, c:head_dim)
if self.cos_attn: # always True
scale_mul = self.scale_mul_1H11.clamp_max(self.max_scale_mul).exp() # 11H1 (flash), or 1H11 (not flash)
q = F.normalize(q, dim=-1, eps=1e-12).mul(scale_mul).contiguous() # fp32
k = F.normalize(k, dim=-1, eps=1e-12).contiguous() # fp32
v = v.contiguous() # bf16
else: # be contiguous, to make kernel happy
q = q.contiguous() # bf16
k = k.contiguous() # bf16
v = v.contiguous() # bf16
if rope2d_freqs_grid is not None:
q, k = apply_rotary_emb(q, k, scale_schedule, rope2d_freqs_grid, self.pad_to_multiplier, self.rope2d_normalized_by_hw, scale_ind) #, freqs_cis=freqs_cis)
if self.caching: # kv caching: only used during inference
if self.cached_k is None: self.cached_k = k; self.cached_v = v
else: k = self.cached_k = torch.cat((self.cached_k, k), dim=L_dim); v = self.cached_v = torch.cat((self.cached_v, v), dim=L_dim)
if self.using_flash:
if attn_bias_or_two_vector is not None: # training
kw = dict(VAR_visible_kvlen=attn_bias_or_two_vector[0], VAR_invisible_qlen=attn_bias_or_two_vector[1])
else: # inference (autoregressive sampling)
kw = dict()
oup = flash_attn_func(q.to(v.dtype), k.to(v.dtype), v, dropout_p=0, softmax_scale=self.scale, **kw).view(B, L, C)
else:
# if self.cos_attn: q, k are in fp32; v is in bf16
# else: q, k, v are in bf16
if self.use_flex_attn and attn_fn is not None:
oup = attn_fn(q, k, v, scale=self.scale).transpose(1, 2).reshape(B, L, C)
else:
oup = slow_attn(query=q, key=k, value=v, scale=self.scale, attn_mask=attn_bias_or_two_vector, dropout_p=0).transpose(1, 2).reshape(B, L, C)
# oup: bf16
return self.proj_drop(self.proj(oup))
def extra_repr(self) -> str:
tail = ''
return f'using_flash={self.using_flash}, tau={self.tau}, cos_attn={self.cos_attn}{tail}'
class CrossAttention(nn.Module):
def __init__(
self, for_attn_pool=False, embed_dim=768, kv_dim=4096, num_heads=12,
proj_drop=0., cos_attn=False,
):
"""
:param for_attn_pool: only used in VAR.text_proj_for_sos
:param embed_dim: Q's dim
:param kv_dim: K's and V's dim
:param num_heads: num heads of multi-head attention
:param proj_drop: proj drop out
:param cos_attn: during attention, q and k will be L2-normalized and scaled by a head-wise learnable parameter self.scale_mul_1H11
"""
cos_attn = False # TODO: never use cos attn in cross attention with T5 kv
super().__init__()
self.for_attn_pool = for_attn_pool
self.embed_dim = embed_dim
self.kv_dim = kv_dim
assert embed_dim % num_heads == 0
self.num_heads, self.head_dim = num_heads, embed_dim // num_heads # =64
self.cos_attn = cos_attn
if self.cos_attn:
self.scale = 1
self.scale_mul_1H1 = nn.Parameter(torch.full(size=(1, self.num_heads, 1, 1), fill_value=4.0).log(), requires_grad=True)
self.max_scale_mul = torch.log(torch.tensor(100)).item()
else:
self.scale = 1 / math.sqrt(self.head_dim)
if for_attn_pool:
q = torch.empty(1, self.num_heads, self.head_dim)
nn.init.trunc_normal_(q, mean=0, std=math.sqrt(1 / embed_dim / 3))
self.mat_q = nn.Parameter(q)
else:
self.mat_q = nn.Linear(embed_dim, embed_dim, bias=True)
self.mat_kv = nn.Linear(kv_dim, embed_dim*2, bias=False)
self.v_bias = nn.Parameter(torch.zeros(embed_dim))
self.register_buffer('zero_k_bias', torch.zeros(embed_dim))
self.proj = nn.Linear(embed_dim, embed_dim)
self.proj_drop = get_dropout_layer(proj_drop)
def forward(self, q, ca_kv):
"""
:param q: shaped as (batch, seq_len, Q_dim)
:param ca_kv: contains several vectors, each of which is shaped as (len_i, KV_dim). We have [len_1xKV_dim, len_2xKV_dim, len_3xKV_dim, ...] and lens == [len_1, len_2, len_3, ...]
- kv_compact: shaped as (sum(lens), KV_dim)
- cu_seqlens_k: cumulated sum of lens
- max_seqlen_k: int, max(lens)
NOTE: seq_len (num of Qs) can reach 10k; but len_i (num of KVs) must <= 256
:return: shaped as (batch, seq_len, Q_dim)
"""
kv_compact, cu_seqlens_k, max_seqlen_k = ca_kv
N = kv_compact.shape[0]
kv_compact = F.linear(kv_compact, weight=self.mat_kv.weight, bias=torch.cat((self.zero_k_bias, self.v_bias))).view(N, 2, self.num_heads, self.head_dim) # NC => N2Hc
# attn_bias = xformers.ops.fmha.BlockDiagonalMask.from_seqlens
if not self.for_attn_pool:
B, Lq = q.shape[:2]
q_compact = self.mat_q(q).view(-1, self.num_heads, self.head_dim)
else:
B = cu_seqlens_k.shape[0] - 1
Lq = 1
q_compact = self.mat_q.repeat(B, 1, 1).to(dtype=kv_compact.dtype)
if self.cos_attn: # always False
scale_mul = self.scale_mul_1H1.clamp_max(self.max_scale_mul).exp()
k, v = kv_compact.unbind(dim=1)
q_compact = F.normalize(q_compact, dim=-1).mul(scale_mul)
k = F.normalize(k, dim=-1)
kv_compact = torch.stack((k, v), dim=1)
q_compact = q_compact.contiguous()
kv_compact = kv_compact.contiguous()
cu_seqlens_q = torch.arange(0, Lq * (B+1), Lq, dtype=torch.int32, device=q_compact.device)
if q_compact.dtype == torch.float32: # todo: fp16 or bf16?
oup = flash_attn_varlen_kvpacked_func(q=q_compact.to(dtype=torch.bfloat16), kv=kv_compact.to(dtype=torch.bfloat16), cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=Lq, max_seqlen_k=max_seqlen_k, dropout_p=0, softmax_scale=self.scale).reshape(B, Lq, -1)
oup = oup.float()
else:
oup = flash_attn_varlen_kvpacked_func(q=q_compact, kv=kv_compact, cu_seqlens_q=cu_seqlens_q, cu_seqlens_k=cu_seqlens_k, max_seqlen_q=Lq, max_seqlen_k=max_seqlen_k, dropout_p=0, softmax_scale=self.scale).reshape(B, Lq, -1)
return self.proj_drop(self.proj(oup))
def extra_repr(self) -> str:
return f'Cq={self.embed_dim}, Ckv={self.kv_dim}, cos_attn={self.cos_attn}'
class SelfAttnBlock(nn.Module):
def __init__(
self, embed_dim, kv_dim, cross_attn_layer_scale, cond_dim, act: bool, shared_aln: bool, norm_layer: partial,
num_heads, mlp_ratio=4., drop=0., drop_path=0., tau=1, cos_attn=False,
swiglu=False, customized_flash_attn=False, fused_mlp=False, fused_norm_func=None, checkpointing_sa_only=False,
):
super(SelfAttnBlock, self).__init__()
self.C, self.D = embed_dim, cond_dim
self.drop_path_rate = drop_path
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.attn = SelfAttention(
embed_dim=embed_dim, num_heads=num_heads, proj_drop=drop, tau=tau, cos_attn=cos_attn, customized_flash_attn=customized_flash_attn, attn_fn = attn_fn
)
self.using_swiglu = swiglu
self.ffn = (FFNSwiGLU if swiglu else FFN)(in_features=embed_dim, hidden_features=round(embed_dim * mlp_ratio / 256) * 256, drop=drop, fused_mlp=fused_mlp)
self.ln_wo_grad = norm_layer(embed_dim, elementwise_affine=False)
self.fused_norm_func = fused_norm_func
self.norm_eps = norm_layer.keywords.get('eps', 1e-6)
self.shared_aln = shared_aln
if self.shared_aln:
self.ada_gss = nn.Parameter(torch.randn(1, 1, 6, embed_dim) / embed_dim**0.5)
else:
lin = nn.Linear(cond_dim, 6*embed_dim)
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin)
# NOTE: attn_bias_or_two_vector is None during inference
def forward(self, x, cond_BD, ca_kv, attn_bias_or_two_vector): # todo: minGPT and vqgan also uses pre-norm, just like this, while MaskGiT uses post-norm
with torch.cuda.amp.autocast(enabled=False):
if self.shared_aln: # always True; (1, 1, 6, C) + (B, 1, 6, C)
gamma1, gamma2, scale1, scale2, shift1, shift2 = (self.ada_gss + cond_BD).unbind(2) # 116C + B16C =unbind(2)=> 6 B1C
else:
gamma1, gamma2, scale1, scale2, shift1, shift2 = self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2)
if self.fused_ada_norm is None:
x = x + self.drop_path(self.attn( self.ln_wo_grad(x.float()).mul(scale1.add(1)).add_(shift1), attn_bias_or_two_vector=attn_bias_or_two_vector ).mul_(gamma1))
x = x + self.drop_path(self.ffn( self.ln_wo_grad(x.float()).mul(scale2.add(1)).add_(shift2) ).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP
else:
x = x + self.drop_path(self.attn(self.fused_ada_norm(C=self.C, eps=self.norm_eps, x=x, scale=scale1, shift=shift1), attn_bias_or_two_vector=attn_bias_or_two_vector).mul_(gamma1))
x = x + self.drop_path(self.ffn(self.fused_ada_norm(C=self.C, eps=self.norm_eps, x=x, scale=scale2, shift=shift2)).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP
return x
def extra_repr(self) -> str:
return f'shared_aln={self.shared_aln}, fused_norm={self.fused_norm_func is not None}'
class CrossAttnBlock(nn.Module):
def __init__(
self,
embed_dim, kv_dim, cross_attn_layer_scale, cond_dim, act: bool, shared_aln: bool, norm_layer: partial,
num_heads, mlp_ratio=4., drop=0., drop_path=0., tau=1, cos_attn=False,
swiglu=False, customized_flash_attn=False, fused_mlp=False, fused_norm_func=None, checkpointing_sa_only=False,
use_flex_attn=False, batch_size=2, pad_to_multiplier=1, apply_rope2d=False, rope2d_normalized_by_hw=False,
):
super(CrossAttnBlock, self).__init__()
self.C, self.D = embed_dim, cond_dim
self.drop_path_rate = drop_path
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.sa = SelfAttention(
embed_dim=embed_dim, num_heads=num_heads, proj_drop=drop, tau=tau, cos_attn=cos_attn, customized_flash_attn=customized_flash_attn,
use_flex_attn=use_flex_attn, batch_size=batch_size, pad_to_multiplier=pad_to_multiplier, rope2d_normalized_by_hw=rope2d_normalized_by_hw,
)
self.ca = CrossAttention(embed_dim=embed_dim, kv_dim=kv_dim, num_heads=num_heads, proj_drop=drop, cos_attn=cos_attn)
self.using_swiglu = swiglu
self.ffn = (FFNSwiGLU if swiglu else FFN)(in_features=embed_dim, hidden_features=round(embed_dim * mlp_ratio / 256) * 256, drop=drop, fused_mlp=fused_mlp)
self.ln_wo_grad = norm_layer(embed_dim, elementwise_affine=False)
self.fused_norm_func = fused_norm_func
self.norm_eps = norm_layer.keywords.get('eps', 1e-6)
self.ca_norm = norm_layer(embed_dim, elementwise_affine=True)
self.shared_aln = shared_aln
if self.shared_aln: # always True
self.ada_gss = nn.Parameter(torch.randn(1, 1, 6, embed_dim) / embed_dim**0.5)
else:
lin = nn.Linear(cond_dim, 6*embed_dim)
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin)
if cross_attn_layer_scale >= 0:
self.ca_gamma = nn.Parameter(cross_attn_layer_scale * torch.ones(embed_dim), requires_grad=True)
else:
self.ca_gamma = 1
self.checkpointing_sa_only = checkpointing_sa_only
# NOTE: attn_bias_or_two_vector is None during inference
def forward(self, x, cond_BD, ca_kv, attn_bias_or_two_vector, attn_fn=None, scale_schedule=None, rope2d_freqs_grid=None, scale_ind=0): # todo: minGPT and vqgan also uses pre-norm, just like this, while MaskGiT uses post-norm
with torch.cuda.amp.autocast(enabled=False): # disable half precision
if self.shared_aln: # always True; (1, 1, 6, C) + (B, 1, 6, C)
gamma1, gamma2, scale1, scale2, shift1, shift2 = (self.ada_gss + cond_BD).unbind(2) # 116C + B16C =unbind(2)=> 6 B1C
else:
gamma1, gamma2, scale1, scale2, shift1, shift2 = self.ada_lin(cond_BD).view(-1, 1, 6, self.C).unbind(2)
if self.fused_norm_func is None:
x_sa = self.ln_wo_grad(x.float()).mul(scale1.add(1)).add_(shift1)
if self.checkpointing_sa_only and self.training:
x_sa = checkpoint(self.sa, x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, use_reentrant=False)
else:
x_sa = self.sa(x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid)
x = x + self.drop_path(x_sa.mul_(gamma1))
x = x + self.ca(self.ca_norm(x), ca_kv).float().mul_(self.ca_gamma)
x = x + self.drop_path(self.ffn( self.ln_wo_grad(x.float()).mul(scale2.add(1)).add_(shift2) ).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP
else:
x_sa = self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x, scale=scale1, shift=shift1)
if self.checkpointing_sa_only and self.training:
x_sa = checkpoint(self.sa, x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, use_reentrant=False)
else:
x_sa = self.sa(x_sa, attn_bias_or_two_vector, attn_fn, scale_schedule, rope2d_freqs_grid, scale_ind=scale_ind)
x = x + self.drop_path(x_sa.mul_(gamma1))
x = x + self.ca(self.ca_norm(x), ca_kv).float().mul_(self.ca_gamma)
x = x + self.drop_path(self.ffn(self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x, scale=scale2, shift=shift2)).mul(gamma2)) # this mul(gamma2) cannot be in-placed cuz we possibly use FusedMLP
return x
def extra_repr(self) -> str:
return f'shared_aln={self.shared_aln}, fused_norm={self.fused_norm_func is not None}, ca_gamma={"<learnable>" if isinstance(self.ca_gamma, nn.Parameter) else self.ca_gamma}'
class AdaLNBeforeHead(nn.Module):
def __init__(self, C, D, act: bool, norm_layer: partial, fused_norm_func=None): # C: embed_dim, D: cond_dim
super().__init__()
self.C, self.D = C, D
self.ln_wo_grad = norm_layer(C, elementwise_affine=False)
self.fused_norm_func = fused_norm_func
self.norm_eps = norm_layer.keywords.get('eps', 1e-6)
lin = nn.Linear(D, 2*C)
self.ada_lin = nn.Sequential(nn.SiLU(inplace=False), lin) if act else nn.Sequential(lin)
def forward(self, x_BLC: torch.Tensor, cond_BD: Optional[torch.Tensor]):
scale, shift = self.ada_lin(cond_BD).view(-1, 1, 2, self.C).unbind(2)
if self.fused_norm_func is None:
return self.ln_wo_grad(x_BLC).mul(scale.add(1)).add_(shift)
else:
return self.fused_norm_func(C=self.C, eps=self.norm_eps, x=x_BLC, scale=scale, shift=shift)
def main():
dev = 'cpu' # 'cuda' if torch.cuda.is_available() else 'cpu'
rng = torch.Generator(device=dev)
# for Li in ([1, 3, 5], [1, 3]):
rng.manual_seed(0)
B, H, cq, ckv = 4, 8, 64, 96
Cq = H*cq
Ckv = H*ckv
Li = [5, 4, 7, 6]
Lq = 10
L = max(Li)
attn_bias = torch.zeros(B, 1, Lq, L, device=dev)
for i, x in enumerate(Li):
attn_bias[i, 0, :, x:] = -torch.inf
q = torch.randn(B, Lq, H, cq, generator=rng, device=dev)
k = torch.randn(B, L, H, ckv, generator=rng, device=dev)
v = torch.randn(B, L, H, ckv, generator=rng, device=dev)
tq, tk, tv = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) # BHLc
seqlen_k = torch.tensor(Li, dtype=torch.int32, device=dev)
cu_seqlens_k = F.pad(torch.cumsum(seqlen_k, dim=0, dtype=torch.torch.int32), (1, 0))
kv = torch.stack([k, v], dim=2)
kv_compact = torch.cat([kv[i, :Li[i]] for i in range(B)], dim=0)
ca = CrossAttention(for_attn_pool=False, embed_dim=Cq, kv_dim=Ckv, num_heads=H)
CrossAttention.forward
ca(q, (kv_compact, cu_seqlens_k, max(Li))).mean().backward()
if __name__ == '__main__':
main()
|