MohamedRashad's picture
Update image generation pipeline by adding Autoencoder models and random seed for variability
90c99b7
import subprocess
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
import gradio as gr
import spaces
from gradio_litmodel3d import LitModel3D
import os
os.environ['SPCONV_ALGO'] = 'native'
from typing import *
import torch
import numpy as np
import imageio
import uuid
from easydict import EasyDict as edict
from PIL import Image
from trellis.pipelines import TrellisImageTo3DPipeline
from trellis.representations import Gaussian, MeshExtractResult
from trellis.utils import render_utils, postprocessing_utils
from gradio_client import Client
from diffusers import FluxPipeline, AutoencoderKL, AutoencoderTiny
from live_preview_helpers import flux_pipe_call_that_returns_an_iterable_of_images
import random
llm_client = Client("Qwen/Qwen2.5-72B-Instruct")
device = "cuda" if torch.cuda.is_available() else "cpu"
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device)
good_vae = AutoencoderKL.from_pretrained("Freepik/flux.1-lite-8B-alpha", subfolder="vae", torch_dtype=torch.bfloat16).to(device)
pipe = FluxPipeline.from_pretrained("Freepik/flux.1-lite-8B-alpha", torch_dtype=torch.bfloat16, vae=taef1).to(device)
pipe.vae.enable_tiling()
pipe.vae.enable_slicing()
# pipe.enable_sequential_cpu_offload() # offloads modules to CPU on a submodule level (rather than model level)
torch.cuda.empty_cache()
pipe.flux_pipe_call_that_returns_an_iterable_of_images = flux_pipe_call_that_returns_an_iterable_of_images.__get__(pipe)
MAX_SEED = np.iinfo(np.int32).max
TMP_DIR = "/tmp/Trellis-demo"
os.makedirs(TMP_DIR, exist_ok=True)
def generate_t2i_prompt(item_name):
llm_prompt_template = """You are tasked with creating a concise yet highly detailed description of an item to be used for generating an image in a game development pipeline. The image should show the **entire item** with no parts cropped or hidden. The background should always be plain and monocolor, with no focus on it.
### Guidelines:
1. **Whole Item Focus**: The description should emphasize the full item, ensuring it is clearly depicted in the image.
2. **Concise Details**: Use vivid but compact language to describe the item's shape, materials, textures, colors, and unique features. Avoid unnecessary elaboration or context.
3. **No Background Details**: Specify that the background is plain and monocolor without describing it further.
### Examples:
Item: "Golden Pocket Watch"
A vintage golden pocket watch with intricate floral engravings, polished metal, and Roman numerals on its clock face. Its chain is smooth and reflective, completing the elegant design.
Item: "Crystal Vase"
A tall crystal vase with a fluted top edge, clear polished surface, and delicate floral engravings. The crystal glimmers subtly, showing off its refined craftsmanship.
Now generate a concise description for the item: "{item_name}"
Focus on the item itself, ensuring it is fully described, and specify a plain, white background and the output is no longer than 77 tokens.
"""
object_t2i_prompt = llm_client.predict(
query=llm_prompt_template.format(item_name=item_name),
history=[],
system="You are Qwen, created by Alibaba Cloud. You are a helpful assistant.",
api_name="/model_chat",
)[1][0][-1]
print(object_t2i_prompt)
return object_t2i_prompt
def preprocess_pil_image(image: Image.Image) -> Tuple[str, Image.Image]:
"""
Preprocess the input image.
Args:
image (Image.Image): The input image.
Returns:
str: uuid of the trial.
Image.Image: The preprocessed image.
"""
trial_id = str(uuid.uuid4())
processed_image = pipeline.preprocess_image(image)
processed_image.save(f"{TMP_DIR}/{trial_id}.png")
return trial_id, processed_image
@spaces.GPU(duration=75)
def generate_item_image(object_t2i_prompt):
trial_id = ""
seed = random.randint(0, MAX_SEED)
for image in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
prompt=object_t2i_prompt,
guidance_scale=3.5,
num_inference_steps=28,
width=512,
height=512,
generator=torch.Generator().manual_seed(seed),
output_type="pil",
good_vae=good_vae,
):
yield trial_id, image
trial_id, processed_image = preprocess_pil_image(image)
yield trial_id, processed_image
def pack_state(gs: Gaussian, mesh: MeshExtractResult, trial_id: str) -> dict:
return {
'gaussian': {
**gs.init_params,
'_xyz': gs._xyz.cpu().numpy(),
'_features_dc': gs._features_dc.cpu().numpy(),
'_scaling': gs._scaling.cpu().numpy(),
'_rotation': gs._rotation.cpu().numpy(),
'_opacity': gs._opacity.cpu().numpy(),
},
'mesh': {
'vertices': mesh.vertices.cpu().numpy(),
'faces': mesh.faces.cpu().numpy(),
},
'trial_id': trial_id,
}
def unpack_state(state: dict) -> Tuple[Gaussian, edict, str]:
gs = Gaussian(
aabb=state['gaussian']['aabb'],
sh_degree=state['gaussian']['sh_degree'],
mininum_kernel_size=state['gaussian']['mininum_kernel_size'],
scaling_bias=state['gaussian']['scaling_bias'],
opacity_bias=state['gaussian']['opacity_bias'],
scaling_activation=state['gaussian']['scaling_activation'],
)
gs._xyz = torch.tensor(state['gaussian']['_xyz'], device='cuda')
gs._features_dc = torch.tensor(state['gaussian']['_features_dc'], device='cuda')
gs._scaling = torch.tensor(state['gaussian']['_scaling'], device='cuda')
gs._rotation = torch.tensor(state['gaussian']['_rotation'], device='cuda')
gs._opacity = torch.tensor(state['gaussian']['_opacity'], device='cuda')
mesh = edict(
vertices=torch.tensor(state['mesh']['vertices'], device='cuda'),
faces=torch.tensor(state['mesh']['faces'], device='cuda'),
)
return gs, mesh, state['trial_id']
@spaces.GPU
def image_to_3d(trial_id: str, seed: int, randomize_seed: bool, ss_guidance_strength: float, ss_sampling_steps: int, slat_guidance_strength: float, slat_sampling_steps: int) -> Tuple[dict, str]:
"""
Convert an image to a 3D model.
Args:
trial_id (str): The uuid of the trial.
seed (int): The random seed.
randomize_seed (bool): Whether to randomize the seed.
ss_guidance_strength (float): The guidance strength for sparse structure generation.
ss_sampling_steps (int): The number of sampling steps for sparse structure generation.
slat_guidance_strength (float): The guidance strength for structured latent generation.
slat_sampling_steps (int): The number of sampling steps for structured latent generation.
Returns:
dict: The information of the generated 3D model.
str: The path to the video of the 3D model.
"""
if randomize_seed:
seed = np.random.randint(0, MAX_SEED)
outputs = pipeline.run(
Image.open(f"{TMP_DIR}/{trial_id}.png"),
seed=seed,
formats=["gaussian", "mesh"],
preprocess_image=False,
sparse_structure_sampler_params={
"steps": ss_sampling_steps,
"cfg_strength": ss_guidance_strength,
},
slat_sampler_params={
"steps": slat_sampling_steps,
"cfg_strength": slat_guidance_strength,
},
)
video = render_utils.render_video(outputs['gaussian'][0], num_frames=120)['color']
video_geo = render_utils.render_video(outputs['mesh'][0], num_frames=120)['normal']
video = [np.concatenate([video[i], video_geo[i]], axis=1) for i in range(len(video))]
trial_id = uuid.uuid4()
video_path = f"{TMP_DIR}/{trial_id}.mp4"
os.makedirs(os.path.dirname(video_path), exist_ok=True)
imageio.mimsave(video_path, video, fps=15)
state = pack_state(outputs['gaussian'][0], outputs['mesh'][0], trial_id)
return state, video_path
@spaces.GPU
def extract_glb(state: dict, mesh_simplify: float, texture_size: int) -> Tuple[str, str]:
"""
Extract a GLB file from the 3D model.
Args:
state (dict): The state of the generated 3D model.
mesh_simplify (float): The mesh simplification factor.
texture_size (int): The texture resolution.
Returns:
str: The path to the extracted GLB file.
"""
gs, mesh, trial_id = unpack_state(state)
glb = postprocessing_utils.to_glb(gs, mesh, simplify=mesh_simplify, texture_size=texture_size, verbose=False)
glb_path = f"{TMP_DIR}/{trial_id}.glb"
glb.export(glb_path)
return glb_path, glb_path
def activate_button() -> gr.Button:
return gr.Button(interactive=True)
def deactivate_button() -> gr.Button:
return gr.Button(interactive=False)
with gr.Blocks(title="Game Items Generator") as demo:
gr.HTML("<h1 style='text-align: center;'>Game Items Generator</h1>")
gr.Markdown("""
## Text or Image to 3D Asset with [TRELLIS](https://trellis3d.github.io/)
- Write in a very simple words the item you want for your game and click "Enhance Prompt" to generate a text-to-image prompt.
- Click "Generate Image" to generate an image of the item or you can bypass all of the previous steps and uplod your own image.
- Click "Generate 3D video" to create a 3D asset. If the image has alpha channel, it be used as the mask. Otherwise, we use `rembg` to remove the background.
* If you find the generated 3D asset satisfactory, click "Extract GLB" to extract the GLB file and download it.
""")
with gr.Row():
with gr.Column():
with gr.Row(equal_height=True):
item_text_field = gr.Textbox(label="Item Name", placeholder="Enter the name of the item", lines=2, scale=4)
enhance_prompt_btn = gr.Button("Enhance Prompt", variant="primary", scale=1)
generate_image_btn = gr.Button("Generate Image", variant="primary")
image_prompt = gr.Image(label="Image Prompt", image_mode="RGBA", type="pil", height=400)
with gr.Accordion(label="Generation Settings", open=False):
seed = gr.Slider(0, MAX_SEED, label="Seed", value=0, step=1)
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
gr.Markdown("Stage 1: Sparse Structure Generation")
with gr.Row():
ss_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=7.5, step=0.1)
ss_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
gr.Markdown("Stage 2: Structured Latent Generation")
with gr.Row():
slat_guidance_strength = gr.Slider(0.0, 10.0, label="Guidance Strength", value=3.0, step=0.1)
slat_sampling_steps = gr.Slider(1, 50, label="Sampling Steps", value=12, step=1)
generate_btn = gr.Button("Generate 3D video")
with gr.Accordion(label="GLB Extraction Settings", open=False):
mesh_simplify = gr.Slider(0.9, 0.98, label="Simplify", value=0.95, step=0.01)
texture_size = gr.Slider(512, 2048, label="Texture Size", value=1024, step=512)
extract_glb_btn = gr.Button("Extract GLB", interactive=False)
with gr.Column():
video_output = gr.Video(label="Generated 3D Asset", autoplay=True, loop=True, height=300)
model_output = LitModel3D(label="Extracted GLB", exposure=20.0, height=300)
# model_output = gr.Model3D(label="Extracted GLB", height=300)
download_glb = gr.DownloadButton(label="Download GLB", interactive=False)
trial_id = gr.Textbox(visible=False)
output_buf = gr.State()
# Example images at the bottom of the page
with gr.Row():
examples = gr.Examples(
examples=[
f'assets/example_image/{image}'
for image in os.listdir("assets/example_image")
],
inputs=[image_prompt],
fn=preprocess_pil_image,
outputs=[trial_id, image_prompt],
run_on_click=True,
examples_per_page=64,
)
# Handlers
enhance_prompt_btn.click(
generate_t2i_prompt,
inputs=[item_text_field],
outputs=[item_text_field],
)
generate_image_btn.click(
generate_item_image,
inputs=[item_text_field],
outputs=[trial_id, image_prompt],
)
image_prompt.upload(
preprocess_pil_image,
inputs=[image_prompt],
outputs=[trial_id, image_prompt],
)
image_prompt.clear(
lambda: '',
outputs=[trial_id],
)
generate_btn.click(
image_to_3d,
inputs=[trial_id, seed, randomize_seed, ss_guidance_strength, ss_sampling_steps, slat_guidance_strength, slat_sampling_steps],
outputs=[output_buf, video_output],
).then(
activate_button,
outputs=[extract_glb_btn],
)
video_output.clear(
deactivate_button,
outputs=[extract_glb_btn],
)
extract_glb_btn.click(
extract_glb,
inputs=[output_buf, mesh_simplify, texture_size],
outputs=[model_output, download_glb],
).then(
activate_button,
outputs=[download_glb],
)
model_output.clear(
deactivate_button,
outputs=[download_glb],
)
# Cleans up the temporary directory every 10 minutes
import threading
import time
def cleanup_tmp_dir():
while True:
if os.path.exists(TMP_DIR):
for file in os.listdir(TMP_DIR):
# remove files older than 10 minutes
if time.time() - os.path.getmtime(os.path.join(TMP_DIR, file)) > 600:
os.remove(os.path.join(TMP_DIR, file))
time.sleep(600)
cleanup_thread = threading.Thread(target=cleanup_tmp_dir)
cleanup_thread.start()
# Launch the Gradio app
if __name__ == "__main__":
pipeline = TrellisImageTo3DPipeline.from_pretrained("JeffreyXiang/TRELLIS-image-large")
pipeline.cuda()
try:
pipeline.preprocess_image(Image.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))) # Preload rembg
except:
pass
demo.launch(share=False)