FrenchDroneKeyword / gradio_utils.py
blanchon's picture
add log
c4aab69
raw
history blame
1.32 kB
from typing import Callable, Optional
import numpy as np
import librosa
import gradio as gr
from datetime import datetime
def predict_gradio(data,
uniform_lambda,
sklearn_model,
label_transform,
target_sr: int = 22_050):
if data is None:
return
classes = sklearn_model.classes_
if label_transform is not None:
classes = label_transform.inverse_transform(classes)
y, sr = data[1], data[0]
y_original_signal = load_as_librosa(y, sr, target_sr=target_sr)
y_uniform = uniform_lambda(y_original_signal, target_sr).astype(np.float32)
prediction = sklearn_model.predict_proba(y_uniform.reshape(1, -1))
result = {str(label): float(confidence) for (
label, confidence) in zip(classes, prediction.flatten())}
print(f"{datetime.now()} predict {prediction}")
return result
def load_as_librosa(y: np.ndarray, sr: int, target_sr: int = 22050) -> np.ndarray:
data_dtype = y.dtype
dtype_min = np.iinfo(data_dtype).min
dtype_max = np.iinfo(data_dtype).max
dtype_range = np.abs(dtype_max-dtype_min)
y_normalize = (y.astype(np.float32)-dtype_min)/dtype_range
y_normalize_resample = librosa.resample(y=y_normalize,
orig_sr=sr,
target_sr=target_sr)
return y_normalize_resample