MjolnirThor
commited on
Create start_training.py
Browse files- start_training.py +56 -0
start_training.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
print("Starting training process...")
|
2 |
+
from datasets import load_dataset
|
3 |
+
from transformers import (
|
4 |
+
AutoModelForSeq2SeqLM,
|
5 |
+
AutoTokenizer,
|
6 |
+
Trainer,
|
7 |
+
DataCollatorForSeq2Seq
|
8 |
+
)
|
9 |
+
from training_config import training_args
|
10 |
+
|
11 |
+
# Load dataset
|
12 |
+
dataset = load_dataset("health360/Healix-Shot", split=f"train[:100000]")
|
13 |
+
|
14 |
+
# Initialize model and tokenizer
|
15 |
+
model_name = "google/flan-t5-large"
|
16 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
17 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
18 |
+
|
19 |
+
def tokenize_function(examples):
|
20 |
+
return tokenizer(
|
21 |
+
examples['text'],
|
22 |
+
padding="max_length",
|
23 |
+
truncation=True,
|
24 |
+
max_length=512,
|
25 |
+
return_attention_mask=True
|
26 |
+
)
|
27 |
+
|
28 |
+
# Process dataset
|
29 |
+
train_test_split = dataset.train_test_split(test_size=0.1)
|
30 |
+
tokenized_train = train_test_split['train'].map(
|
31 |
+
tokenize_function,
|
32 |
+
batched=True,
|
33 |
+
remove_columns=dataset.column_names
|
34 |
+
)
|
35 |
+
tokenized_eval = train_test_split['test'].map(
|
36 |
+
tokenize_function,
|
37 |
+
batched=True,
|
38 |
+
remove_columns=dataset.column_names
|
39 |
+
)
|
40 |
+
|
41 |
+
# Initialize trainer
|
42 |
+
trainer = Trainer(
|
43 |
+
model=model,
|
44 |
+
args=training_args,
|
45 |
+
train_dataset=tokenized_train,
|
46 |
+
eval_dataset=tokenized_eval,
|
47 |
+
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, model=model)
|
48 |
+
)
|
49 |
+
|
50 |
+
# Train and save
|
51 |
+
print("Starting the training...")
|
52 |
+
trainer.train()
|
53 |
+
print("Training complete, saving model...")
|
54 |
+
model.push_to_hub("MjolnirThor/flan-t5-custom-handler")
|
55 |
+
tokenizer.push_to_hub("MjolnirThor/flan-t5-custom-handler")
|
56 |
+
print("Model saved successfully!")
|