Mishmosh commited on
Commit
670bd75
1 Parent(s): 07f654f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -0
app.py CHANGED
@@ -275,5 +275,35 @@ print(summarized_text)
275
  # number_of_sentences-=1
276
  #print(summarized_text_list_list)
277
  #print(number_of_sentences)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278
 
279
 
 
275
  # number_of_sentences-=1
276
  #print(summarized_text_list_list)
277
  #print(number_of_sentences)
278
+ #text to speech
279
+ #!pip install git+https://github.com/huggingface/transformers.git
280
+ #!pip install datasets sentencepiece
281
+ import torch
282
+ import soundfile as sf
283
+ from IPython.display import Audio
284
+ from datasets import load_dataset
285
+ from transformers import pipeline
286
+ from transformers import SpeechT5Processor, SpeechT5ForTextToSpeech
287
+ processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
288
+ model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts")
289
+ text = "The future belongs to those who believe in the beauty of their dreams."
290
+ #text = (summarized_text_list_list)
291
+
292
+ #inputs = processor(text=summarized_text_list_list, return_tensors="pt")
293
+ inputs = processor(text, return_tensors="pt")
294
+ from datasets import load_dataset
295
+ embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
296
+
297
+ import torch
298
+ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
299
+ spectrogram = model.generate_speech(inputs["input_ids"], speaker_embeddings)
300
+ from transformers import SpeechT5HifiGan
301
+ vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
302
+ with torch.no_grad():
303
+ speech = vocoder(spectrogram)
304
+ speech = model.generate_speech(inputs["input_ids"], speaker_embeddings, vocoder=vocoder)
305
+ Audio(speech, rate=16000)
306
+
307
+
308
 
309