File size: 12,418 Bytes
6e20537
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
import os
import gradio as gr
from PIL import Image
import torch
import matplotlib.pyplot as plt
import imageio
import numpy as np
import argparse

from point_e.diffusion.configs import DIFFUSION_CONFIGS, diffusion_from_config
from point_e.diffusion.sampler import PointCloudSampler
from point_e.models.download import load_checkpoint
from point_e.models.configs import MODEL_CONFIGS, model_from_config
from point_e.util.plotting import plot_point_cloud
from point_e.util.pc_to_mesh import marching_cubes_mesh

from diffusers import StableDiffusionPipeline

import trimesh


state = ""
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

css = '''
    .instruction{position: absolute; top: 0;right: 0;margin-top: 0px !important}
    .arrow{position: absolute;top: 0;right: -110px;margin-top: -8px !important}
    #component-4, #component-3, #component-10{min-height: 0}
    .duplicate-button img{margin: 0}
'''

def set_state(s):
    print(s)
    global state
    state = s

def get_state():
    return state

def load_img2mesh_model(model_name):
    set_state(f'Creating img2mesh model {model_name}...')
    i2m_name = model_name
    i2m_model = model_from_config(MODEL_CONFIGS[i2m_name], device)
    i2m_model.eval()
    base_diffusion_i2m = diffusion_from_config(DIFFUSION_CONFIGS[i2m_name])

    set_state(f'Downloading img2mesh checkpoint {model_name}...')
    i2m_model.load_state_dict(load_checkpoint(i2m_name, device))

    return i2m_model, base_diffusion_i2m



def get_sampler(model_name, txt2obj, guidance_scale):
    if txt2obj:
        set_state('Creating txt2mesh model...')
        t2m_name = 'base40M-textvec'
        t2m_model = model_from_config(MODEL_CONFIGS[t2m_name], device)
        t2m_model.eval()
        base_diffusion_t2m = diffusion_from_config(DIFFUSION_CONFIGS[t2m_name])

        set_state('Downloading txt2mesh checkpoint...')
        t2m_model.load_state_dict(load_checkpoint(t2m_name, device))
    else:
        i2m_model, base_diffusion_i2m = load_img2mesh_model(model_name)

    set_state('Creating upsample model...')
    upsampler_model = model_from_config(MODEL_CONFIGS['upsample'], device)
    upsampler_model.eval()
    upsampler_diffusion = diffusion_from_config(DIFFUSION_CONFIGS['upsample'])

    set_state('Downloading upsampler checkpoint...')
    upsampler_model.load_state_dict(load_checkpoint('upsample', device))

    return PointCloudSampler(
            device=device,
            models=[t2m_model if txt2obj else i2m_model, upsampler_model],
            diffusions=[base_diffusion_t2m if txt2obj else base_diffusion_i2m, upsampler_diffusion],
            num_points=[1024, 4096 - 1024],
            aux_channels=['R', 'G', 'B'],
            guidance_scale=[guidance_scale, 0.0 if txt2obj else guidance_scale],
            model_kwargs_key_filter=('texts', '') if txt2obj else ("*",)
        )

def generate_txt2img(prompt):
    pipe = StableDiffusionPipeline.from_pretrained("point_e_model_cache/stable-diffusion-2-1", torch_dtype=torch.float16)
    pipe = pipe.to("cuda")
    image = pipe(prompt).images[0]

    return image

def generate_3D(input, model_name='base1B', guidance_scale=3.0, grid_size=128):
    set_state('Entered generate function...')

    # try:
    #     input = Image.fromarray(input)
    # except:
    #     img = generate_txt2img(input)
    #     img.save('/tmp/img.png')
    #     input = Image.open('/tmp/img.png')

    if isinstance(input, Image.Image):
        input = prepare_img(input)

    # if input is a string, it's a text prompt
    sampler = get_sampler(model_name, txt2obj=True if isinstance(input, str) else False, guidance_scale=guidance_scale)

    # Produce a sample from the model.
    set_state('Sampling...')
    samples = None
    kw_args = dict(texts=[input]) if isinstance(input, str) else dict(images=[input])
    for x in sampler.sample_batch_progressive(batch_size=1, model_kwargs=kw_args):
        samples = x

    set_state('Converting to point cloud...')
    pc = sampler.output_to_point_clouds(samples)[0]

    set_state('Converting to mesh...')
    save_ply(pc, '/tmp/mesh.ply', grid_size)

    set_state('')

    return ply_to_glb('/tmp/mesh.ply', '/tmp/mesh.glb'), create_gif(pc), gr.update(value=['/tmp/mesh.glb', '/tmp/mesh.ply'], visible=True)

def prepare_img(img):

    w, h = img.size
    if w > h:
        img = img.crop((w - h) / 2, 0, w - (w - h) / 2, h)
    else:
        img = img.crop((0, (h - w) / 2, w, h - (h - w) / 2))

    # resize to 256x256
    img = img.resize((256, 256))

    return img


def ply_to_glb(ply_file, glb_file):
    mesh = trimesh.load(ply_file)

    # Save the mesh as a glb file using Trimesh
    mesh.export(glb_file, file_type='glb')

    return glb_file

def save_ply(pc, file_name, grid_size):
    set_state('Creating SDF model...')
    sdf_name = 'sdf'
    sdf_model = model_from_config(MODEL_CONFIGS[sdf_name], device)
    sdf_model.eval()

    set_state('Loading SDF model...')
    sdf_model.load_state_dict(load_checkpoint(sdf_name, device))

    # Produce a mesh (with vertex colors)
    mesh = marching_cubes_mesh(
        pc=pc,
        model=sdf_model,
        batch_size=4096,
        grid_size=grid_size, # increase to 128 for resolution used in evals
        progress=True,
    )

    # Write the mesh to a PLY file to import into some other program.
    with open(file_name, 'wb') as f:
        mesh.write_ply(f)

def create_gif(pc):
    fig = plt.figure(facecolor='black', figsize=(4, 4))
    ax = fig.add_subplot(111, projection='3d', facecolor='black')
    fixed_bounds=((-0.75, -0.75, -0.75),(0.75, 0.75, 0.75))

    # Create an empty list to store the frames
    frames = []

    # Create a loop to generate the frames for the GIF
    for angle in range(0, 360, 4):
        # Clear the plot and plot the point cloud
        ax.clear()
        color_args = np.stack(
            [pc.channels["R"], pc.channels["G"], pc.channels["B"]], axis=-1
        )
        c = pc.coords


        ax.scatter(c[:, 0], c[:, 1], c[:, 2], c=color_args)

        # Set the viewpoint for the plot
        ax.view_init(elev=10, azim=angle)

        # Turn off the axis labels and ticks
        ax.axis('off')
        ax.set_xlim3d(fixed_bounds[0][0], fixed_bounds[1][0])
        ax.set_ylim3d(fixed_bounds[0][1], fixed_bounds[1][1])
        ax.set_zlim3d(fixed_bounds[0][2], fixed_bounds[1][2])

        # Draw the figure to update the image data
        fig.canvas.draw()

        # Save the plot as a frame for the GIF
        frame = np.array(fig.canvas.renderer.buffer_rgba())
        w, h = frame.shape[0], frame.shape[1]
        i = int(round((h - int(h*0.6)) / 2.))
        frame = frame[i:i + int(h*0.6),i:i + int(h*0.6)]
        frames.append(frame)

    # Save the GIF using imageio
    imageio.mimsave('/tmp/pointcloud.mp4', frames, fps=30)
    return '/tmp/pointcloud.mp4'

block = gr.Blocks().queue(max_size=250, concurrency_count=6)
with block:
    with gr.Box():
        if(not torch.cuda.is_available()):
            top_description = gr.HTML(f'''
                <div style="text-align: center; max-width: 650px; margin: 0 auto;">
                <div>
                    <img class="logo" src="file/images/mirage.png" alt="Mirage Logo"
                        style="margin: auto; max-width: 7rem;">
                    <br />
                    <h1 style="font-weight: 900; font-size: 2.5rem;">
                    Point-E Web UI
                    </h1>
                    <br />
                    <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co./spaces/MirageML/point-e?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
                </div>
                <br />
                <p style="margin-bottom: 10px; font-size: 94%">
                Generate 3D Assets in 2 minutes with a prompt or image!
                Based on the <a href="https://github.com/openai/point-e">Point-E</a> implementation
                </p>
                <br />
                <p>There's only one step left before you can train your model: <a href="https://huggingface.co./spaces/{os.environ['SPACE_ID']}/settings" style="text-decoration: underline" target="_blank">attribute a <b>T4 GPU</b> to it (via the Settings tab)</a> and run the training below. Other GPUs are not compatible for now. You will be billed by the minute from when you activate the GPU until when it is turned it off.</p>
                </div>
            ''')
        else:
            top_description = gr.HTML(f'''
                    <div style="text-align: center; max-width: 650px; margin: 0 auto;">
                    <div>
                        <img class="logo" src="file/images/mirage.png" alt="Mirage Logo"
                            style="margin: auto; max-width: 7rem;">
                        <br />
                        <h1 style="font-weight: 900; font-size: 2.5rem;">
                        Point-E Web UI
                        </h1>
                        <br />
                        <a class="duplicate-button" style="display:inline-block" target="_blank" href="https://huggingface.co./spaces/MirageML/point-e?duplicate=true"><img src="https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14" alt="Duplicate Space"></a>
                    </div>
                    <br />
                    <p style="margin-bottom: 10px; font-size: 94%">
                    Generate 3D Assets in 2 minutes with a prompt or image!
                    Based on the <a href="https://github.com/openai/point-e">Point-E</a> implementation
                    </p>
                    </div>
                ''')
    with gr.Row():
        with gr.Column():
            with gr.Tab("Image to 3D"):
                gr.Markdown("Best results with images of objects on an empty background.")
                input_image = gr.Image(label="Image")
                img_button = gr.Button(label="Generate")

            with gr.Tab("Text to 3D"):
                gr.Markdown("Uses Stable Diffusion to create an image from the prompt.")
                prompt = gr.Textbox(label="Prompt", placeholder="A HD photo of a Corgi")
                text_button = gr.Button(label="Generate")

            with gr.Accordion("Advanced options", open=False):
                model = gr.Radio(["base40M", "base300M", "base1B"], label="Model", value="base1B")
                scale = gr.Slider(
                    label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1
                )

        with gr.Column():
            model_gif = gr.Video(label="3D Model GIF")
            # btn_pc_to_obj = gr.Button(value="Convert to OBJ", visible=False)
            model_3d = gr.Model3D(value=None)
            file_out = gr.File(label="Files", visible=False)

    if torch.cuda.is_available():
        gr.Examples(
            examples=[
                ["images/pumpkin.png"],
                ["images/fantasy_world.png"],
            ],
            inputs=[input_image],
            outputs=[model_3d, model_gif, file_out],
            fn=generate_3D,
            cache_examples=True
        )

    img_button.click(fn=generate_3D, inputs=[input_image, model, scale], outputs=[model_3d, model_gif, file_out])
    text_button.click(fn=generate_3D, inputs=[prompt, model, scale], outputs=[model_3d, model_gif, file_out])

block.launch(show_api=False)