File size: 13,164 Bytes
dbb343d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [],
   "source": [
    "%load_ext autoreload\n",
    "%autoreload 2\n",
    "\n",
    "import sys\n",
    "sys.path.append(\"..\")\n",
    "from src.preprocessing import PreprocessingPipeline\n",
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "df = pd.read_csv(\"../data/test_en.csv\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "pre_steps = [\n",
    "    \"normalize_unicode\",\n",
    "    \"normalize_acronyms\",\n",
    "    \"normalize_bullet_points\",\n",
    "    \"normalize_hyphenated_words\",\n",
    "    \"normalize_quotation_marks\",\n",
    "    \"normalize_repeating_words\",\n",
    "    \"normalize_repeating_chars\",\n",
    "    \"normalize_whitespaces\",\n",
    "    \"normalize_useless_spaces\",\n",
    "    # \"replace_currency_symbols\",\n",
    "    # \"replace_emails\",\n",
    "    # \"replace_emojis\",\n",
    "    # \"replace_hashtags\",\n",
    "    # \"replace_numbers\",\n",
    "    # \"replace_phone_numbers\",\n",
    "    # \"replace_urls\",\n",
    "    # \"replace_user_handles\",\n",
    "    # \"remove_accents\",\n",
    "    # \"remove_brackets\",\n",
    "    # \"remove_html_tags\",\n",
    "    # \"remove_non_words\",\n",
    "    # \"remove_punctuation\",\n",
    "    # \"lowercase\",\n",
    "    \"strip\",\n",
    "]\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "post_steps = [\n",
    "    \"lowercase\",\n",
    "    \"replace_currency_symbols\",\n",
    "    \"replace_urls\",\n",
    "    \"replace_emails\",\n",
    "    \"replace_user_handles\",\n",
    "    \"replace_hashtags\",\n",
    "    \"replace_emojis\",\n",
    "    # \"replace_phone_numbers\",\n",
    "    # \"replace_numbers\",\n",
    "    \"remove_accents\",\n",
    "    \"remove_brackets\",\n",
    "    \"remove_html_tags\",\n",
    "    \"remove_non_words\",\n",
    "    \"remove_numbers\",\n",
    "    \"remove_punctuation\",\n",
    "    \"normalize_repeating_words\",\n",
    "    \"normalize_repeating_chars\",\n",
    "    \"normalize_useless_spaces\",\n",
    "    \"strip\",\n",
    "]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "pipe = PreprocessingPipeline(\n",
    "    language=\"English\",\n",
    "    lemmatization_step=\"Spacy lemmatizer (no stopwords)\", # \"Disable lemmatizer\",\n",
    "    pre_steps=pre_steps,\n",
    "    post_steps=post_steps,\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "\"I think it's time John Rambo move on with his life and try to put Vietnam behind him. This series is getting old and Rambo is no longer a solider but a cold blooded killer. Ever time he turns up on the screen someone dies. Vietnam was not a fun place to be and frankly I am tired of Hollywood making it seem like it was. This is not the worst of the films concerning Vietnam, that honor goes to John Waynes Green Berets. In any case John Rambo carrying around a 50 cal Machine Gun taking on what seems to be half of the Viet Cong army plus a good many Russians is an insult to watch. What is worse is Rambos cheesy speech at the end.Please!! Oh yeah I heard they are making another one.\""
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pipe.pre(df.text[0])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'think time John Rambo life try Vietnam . series get old Rambo long solider cold blooded killer . time turn screen die . Vietnam fun place frankly tired Hollywood make like . bad film concern Vietnam , honor go John Waynes Green Berets . case John Rambo carry 50 cal Machine Gun take half Viet Cong army plus good Russians insult watch . bad Rambos cheesy speech end . ! ! oh yeah hear make .'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pipe.lemma(pipe.nlp(pipe.pre(df.text[0])))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'think time john rambo life try vietnam series get old rambo long solider cold blooded killer time turn screen die vietnam fun place frankly tired hollywood make like bad film concern vietnam honor go john waynes green berets case john rambo carry cal machine gun take half viet cong army plus good russians insult watch bad rambos cheesy speech end oh yeah hear make'"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pipe.post(pipe.lemma(pipe.nlp(pipe.pre(df.text[0]))))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
   "source": [
    "odf = pipe.vaex_process(df, \"text\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>label</th>\n",
       "      <th>text</th>\n",
       "      <th>processed_text</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>I think it's time John Rambo move on with his ...</td>\n",
       "      <td>think time john rambo life try vietnam series ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>I've just watch 2 films of Pang brothers, The ...</td>\n",
       "      <td>watch film pang brother eye watch eye kind dis...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>1</td>\n",
       "      <td>Jewel Thief is *THE* crime thriller of Bollywo...</td>\n",
       "      <td>jewel thief crime thriller bollywood direct bi...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>0</td>\n",
       "      <td>This so called remake is terrible. I went to s...</td>\n",
       "      <td>call remake terrible go tonight day anticipati...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>1</td>\n",
       "      <td>When Northfork debuted at the Cannes Film Fest...</td>\n",
       "      <td>northfork debut cannes film festival people li...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>...</th>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "      <td>...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4995</th>\n",
       "      <td>0</td>\n",
       "      <td>The title tells it all -- Ed Gein, the butcher...</td>\n",
       "      <td>title tell ed gein butcher plainfield it zappy...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4996</th>\n",
       "      <td>0</td>\n",
       "      <td>This film makes about as much sense as an 'Ozz...</td>\n",
       "      <td>film make sense ozzie harriet father know best...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4997</th>\n",
       "      <td>0</td>\n",
       "      <td>\"Sex and the City\" has some great things going...</td>\n",
       "      <td>sex city great thing go problem saddle number ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4998</th>\n",
       "      <td>0</td>\n",
       "      <td>Please...if anybody gets the chance to read th...</td>\n",
       "      <td>please if anybody get chance read watch movie ...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4999</th>\n",
       "      <td>0</td>\n",
       "      <td>...a film comes along that manages to be absol...</td>\n",
       "      <td>a film come manage absolutely terrible open ti...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "<p>5000 rows × 3 columns</p>\n",
       "</div>"
      ],
      "text/plain": [
       "      label                                               text  \\\n",
       "0         0  I think it's time John Rambo move on with his ...   \n",
       "1         1  I've just watch 2 films of Pang brothers, The ...   \n",
       "2         1  Jewel Thief is *THE* crime thriller of Bollywo...   \n",
       "3         0  This so called remake is terrible. I went to s...   \n",
       "4         1  When Northfork debuted at the Cannes Film Fest...   \n",
       "...     ...                                                ...   \n",
       "4995      0  The title tells it all -- Ed Gein, the butcher...   \n",
       "4996      0  This film makes about as much sense as an 'Ozz...   \n",
       "4997      0  \"Sex and the City\" has some great things going...   \n",
       "4998      0  Please...if anybody gets the chance to read th...   \n",
       "4999      0  ...a film comes along that manages to be absol...   \n",
       "\n",
       "                                         processed_text  \n",
       "0     think time john rambo life try vietnam series ...  \n",
       "1     watch film pang brother eye watch eye kind dis...  \n",
       "2     jewel thief crime thriller bollywood direct bi...  \n",
       "3     call remake terrible go tonight day anticipati...  \n",
       "4     northfork debut cannes film festival people li...  \n",
       "...                                                 ...  \n",
       "4995  title tell ed gein butcher plainfield it zappy...  \n",
       "4996  film make sense ozzie harriet father know best...  \n",
       "4997  sex city great thing go problem saddle number ...  \n",
       "4998  please if anybody get chance read watch movie ...  \n",
       "4999  a film come manage absolutely terrible open ti...  \n",
       "\n",
       "[5000 rows x 3 columns]"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "odf"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "steps = list(PreprocessingPipeline.pipeline_components().keys())\n",
    "default_pre_steps_idx = [steps.index(i) for i in pre_steps]\n",
    "default_post_steps_idx = [steps.index(i) for i in post_steps]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[1, 14, 2, 3, 4, 23, 22, 5, 21, 24]"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "default_pre_steps_idx"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[0, 7, 6, 8, 13, 10, 9, 15, 16, 17, 19, 20, 18, 23, 22, 21, 24]"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "default_post_steps_idx"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "sorted(list(PreprocessingPipeline.pipeline_components().keys()))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "list(PreprocessingPipeline.lemmatization_component().keys())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "interpreter": {
   "hash": "aa7efd0b3ada76bb0689aa8ed0b61d7de788847e3d11d2d142fc5800c765982f"
  },
  "kernelspec": {
   "display_name": "Python 3.7.11 64-bit ('wordify': conda)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.11"
  },
  "orig_nbformat": 4
 },
 "nbformat": 4,
 "nbformat_minor": 2
}