Spaces:
Build error
Build error
Commit
·
5a42f41
1
Parent(s):
8a113c5
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
import requests
|
5 |
+
import numpy as np
|
6 |
+
import re
|
7 |
+
import io
|
8 |
+
|
9 |
+
from PIL import Image
|
10 |
+
from transformers import ViltProcessor, ViltForMaskedLM
|
11 |
+
from torchvision import transforms
|
12 |
+
|
13 |
+
processor = ViltProcessor.from_pretrained("dandelin/vilt-b32-mlm")
|
14 |
+
model = ViltForMaskedLM.from_pretrained("dandelin/vilt-b32-mlm")
|
15 |
+
|
16 |
+
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
17 |
+
model.to(device)
|
18 |
+
|
19 |
+
class MinMaxResize:
|
20 |
+
def __init__(self, shorter=800, longer=1333):
|
21 |
+
self.min = shorter
|
22 |
+
self.max = longer
|
23 |
+
|
24 |
+
def __call__(self, x):
|
25 |
+
w, h = x.size
|
26 |
+
scale = self.min / min(w, h)
|
27 |
+
if h < w:
|
28 |
+
newh, neww = self.min, scale * w
|
29 |
+
else:
|
30 |
+
newh, neww = scale * h, self.min
|
31 |
+
|
32 |
+
if max(newh, neww) > self.max:
|
33 |
+
scale = self.max / max(newh, neww)
|
34 |
+
newh = newh * scale
|
35 |
+
neww = neww * scale
|
36 |
+
|
37 |
+
newh, neww = int(newh + 0.5), int(neww + 0.5)
|
38 |
+
newh, neww = newh // 32 * 32, neww // 32 * 32
|
39 |
+
|
40 |
+
return x.resize((neww, newh), resample=Image.BICUBIC)
|
41 |
+
|
42 |
+
def pixelbert_transform(size=800):
|
43 |
+
longer = int((1333 / 800) * size)
|
44 |
+
return transforms.Compose(
|
45 |
+
[
|
46 |
+
MinMaxResize(shorter=size, longer=longer),
|
47 |
+
transforms.ToTensor(),
|
48 |
+
transforms.Compose([transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])]),
|
49 |
+
]
|
50 |
+
)
|
51 |
+
|
52 |
+
|
53 |
+
def infer(url, mp_text):
|
54 |
+
try:
|
55 |
+
res = requests.get(url)
|
56 |
+
image = Image.open(io.BytesIO(res.content)).convert("RGB")
|
57 |
+
img = pixelbert_transform(size=384)(image)
|
58 |
+
img = img.unsqueeze(0).to(device)
|
59 |
+
except:
|
60 |
+
return False
|
61 |
+
|
62 |
+
tl = len(re.findall("\[MASK\]", mp_text))
|
63 |
+
inferred_token = [mp_text]
|
64 |
+
encoding = processor(image, mp_text, return_tensors="pt")
|
65 |
+
|
66 |
+
with torch.no_grad():
|
67 |
+
for i in range(tl):
|
68 |
+
encoded = processor.tokenizer(inferred_token)
|
69 |
+
input_ids = torch.tensor(encoded.input_ids)
|
70 |
+
encoded = encoded["input_ids"][0][1:-1]
|
71 |
+
outputs = model(input_ids=input_ids, pixel_values=encoding.pixel_values)
|
72 |
+
mlm_logits = outputs.logits[0] # shape (seq_len, vocab_size)
|
73 |
+
|
74 |
+
# only take into account text features (minus CLS and SEP token)
|
75 |
+
mlm_logits = mlm_logits[1 : input_ids.shape[1] - 1, :]
|
76 |
+
mlm_values, mlm_ids = mlm_logits.softmax(dim=-1).max(dim=-1)
|
77 |
+
|
78 |
+
# only take into account text
|
79 |
+
mlm_values[torch.tensor(encoded) != 103] = 0
|
80 |
+
select = mlm_values.argmax().item()
|
81 |
+
encoded[select] = mlm_ids[select].item()
|
82 |
+
inferred_token = [processor.decode(encoded)]
|
83 |
+
|
84 |
+
encoded = processor.tokenizer(inferred_token)
|
85 |
+
output = processor.decode(encoded.input_ids[0], skip_special_tokens=True)
|
86 |
+
|
87 |
+
return [np.array(image), output]
|
88 |
+
|
89 |
+
inputs_interface = [
|
90 |
+
gr.inputs.Textbox(
|
91 |
+
label="Url of an image.",
|
92 |
+
lines=5,
|
93 |
+
),
|
94 |
+
gr.inputs.Textbox(label="Caption with [MASK] tokens to be filled.", lines=5),
|
95 |
+
]
|
96 |
+
outputs_interface = [
|
97 |
+
gr.outputs.Image(label="Image"),
|
98 |
+
gr.outputs.Textbox(label="description"),
|
99 |
+
]
|
100 |
+
|
101 |
+
interface = gr.Interface(
|
102 |
+
fn=infer,
|
103 |
+
inputs=inputs_interface,
|
104 |
+
outputs=outputs_interface,
|
105 |
+
server_name="0.0.0.0",
|
106 |
+
server_port=8888,
|
107 |
+
examples=[
|
108 |
+
[
|
109 |
+
"https://s3.geograph.org.uk/geophotos/06/21/24/6212487_1cca7f3f_1024x1024.jpg",
|
110 |
+
"a display of flowers growing out and over the [MASK] [MASK] in front of [MASK] on a [MASK] [MASK].",
|
111 |
+
],
|
112 |
+
|
113 |
+
[
|
114 |
+
"https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcT5W71UTcSBm3r5l9NzBemglq983bYvKOHRkw&usqp=CAU",
|
115 |
+
"An [MASK] with the [MASK] in the [MASK].",
|
116 |
+
],
|
117 |
+
|
118 |
+
[
|
119 |
+
"https://www.referenseo.com/wp-content/uploads/2019/03/image-attractive-960x540.jpg",
|
120 |
+
"An [MASK] is flying with a [MASK] over a [MASK].",
|
121 |
+
],
|
122 |
+
],
|
123 |
+
)
|
124 |
+
|
125 |
+
interface.launch()
|
126 |
+
|