MichalMlodawski
commited on
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
from pathlib import Path
|
4 |
+
from ultralytics import YOLO
|
5 |
+
import cv2
|
6 |
+
import logging
|
7 |
+
import numpy as np
|
8 |
+
|
9 |
+
|
10 |
+
def setup_logging():
|
11 |
+
logging.basicConfig(level=logging.INFO,
|
12 |
+
format='%(asctime)s - %(levelname)s - %(message)s')
|
13 |
+
|
14 |
+
|
15 |
+
def process_image(model_path, image):
|
16 |
+
try:
|
17 |
+
# Wczytanie modelu
|
18 |
+
model = YOLO(model_path)
|
19 |
+
logging.info(f'Loaded model from: {model_path}')
|
20 |
+
|
21 |
+
# Przetwarzanie obrazu
|
22 |
+
logging.info(f'Processing file')
|
23 |
+
# Wykrywanie obiektów na obrazie
|
24 |
+
results = model(image)
|
25 |
+
|
26 |
+
for result in results:
|
27 |
+
# Pobierz obraz wynikowy z zaznaczonymi wykryciami
|
28 |
+
result_img = result.plot()
|
29 |
+
|
30 |
+
logging.info("Image processing completed.")
|
31 |
+
return result_img
|
32 |
+
except Exception as e:
|
33 |
+
logging.error(f'Error occurred: {e}')
|
34 |
+
return None
|
35 |
+
|
36 |
+
|
37 |
+
def yolo_detection(image):
|
38 |
+
model_path = 'model.pt' # Podaj tutaj ścieżkę do swojego modelu YOLO
|
39 |
+
result_image = process_image(model_path, image)
|
40 |
+
if result_image is not None:
|
41 |
+
return cv2.cvtColor(result_image, cv2.COLOR_BGR2RGB)
|
42 |
+
else:
|
43 |
+
return None
|
44 |
+
|
45 |
+
|
46 |
+
with gr.Blocks() as demo:
|
47 |
+
gr.Markdown("# 👁️ tiny YOLOv8 Open/closed eye detection\nUpload an image and see the detection results.")
|
48 |
+
|
49 |
+
image_input = gr.Image(label="Input Image")
|
50 |
+
image_output = gr.Image(label="Detected Objects")
|
51 |
+
|
52 |
+
detect_button = gr.Button("Detect Objects")
|
53 |
+
|
54 |
+
detect_button.click(fn=yolo_detection, inputs=image_input, outputs=image_output)
|
55 |
+
|
56 |
+
demo.launch(share=True)
|