File size: 7,877 Bytes
8d7b9ed
 
 
380fd45
8d7b9ed
 
 
 
 
 
 
5adddab
 
8d7b9ed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import streamlit as st
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import fitz  # Correct import for PyMuPDF
import os

# Load Longformer model and tokenizer
longformer_model = AutoModelForSequenceClassification.from_pretrained("RREEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier")
longformer_tokenizer = AutoTokenizer.from_pretrained("allenai/longformer-base-4096")

# Load BERT model and tokenizer
bert_model = AutoModelForSequenceClassification.from_pretrained("Mhassanen/bert-class-test")
bert_tokenizer = AutoTokenizer.from_pretrained("Mhassanen/bert-class-test")

# Function to extract text from PDF
def extract_text_from_pdf(file_path):
    text = ''
    try:
        with fitz.open(file_path) as pdf_document:
            for page_number in range(pdf_document.page_count):
                page = pdf_document.load_page(page_number)
                text += page.get_text()
    except Exception as e:
        st.error(f"Error reading PDF file: {e}")
    return text

# Function to predict the class of the text using a specified model and tokenizer
def predict_class(text, model, tokenizer):
    try:
        max_length = 4096 if "longformer" in str(model) else 512
        truncated_text = text[:max_length]

        inputs = tokenizer(truncated_text, return_tensors="pt", padding=True, truncation=True, max_length=max_length)
        with torch.no_grad():
            outputs = model(**inputs)
            logits = outputs.logits
            predicted_class = torch.argmax(logits, dim=1).item()
        return predicted_class
    except Exception as e:
        st.error(f"Error during prediction: {e}")
        return None

# Setup for uploaded files directory
uploaded_files_dir = "uploaded_files"
os.makedirs(uploaded_files_dir, exist_ok=True)

# Color mapping for class levels
class_colors = {
    0: "#d62728",  # Level 1
    1: "#ff7f0e",  # Level 2
    2: "#2ca02c",  # Level 3
    3: "#1f77b4"   # Level 4
}

# Streamlit page configuration
st.set_page_config(page_title="Paper Citation Classifier", page_icon="logo.png")

# Sidebar content
with st.sidebar:
    st.image("logo.png", width=70)
    st.markdown('<div style="position: absolute; left: 5px;"></div>', unsafe_allow_html=True)
    st.markdown("# Paper Citation Classifier")
    st.markdown("---")
    st.markdown("## About")
    st.markdown('''
    This tool classifies paper citations into different levels based on their number of citations.
    Powered by Fine-Tuned [Longformer model](https://huggingface.co./REEM-ALRASHIDI/LongFormer-Paper-Citaion-Classifier) and BERT model with custom data.
    ''')
    st.markdown("### Class Levels:")
    st.markdown("- Level 1: Highly cited papers")
    st.markdown("- Level 2: Average cited papers")
    st.markdown("- Level 3: More cited papers")
    st.markdown("- Level 4: Low cited papers")
    st.markdown("---")
    st.markdown('Tabuk University')

st.title("Check Your Paper Now!")

# Main content
option = st.radio("Select input type:", ("Text", "PDF"))

if option == "Text":
    title_input = st.text_area("Enter Title:")
    abstract_input = st.text_area("Enter Abstract:")
    full_text_input = st.text_area("Enter Full Text:")
    affiliations_input = st.text_area("Enter Affiliations:")
    keywords_input = st.text_area("Enter Keywords:")
    options = ['cs', "AI"]

    selected_category = st.selectbox("Select WoS categories:", options)
    if selected_category == "Other":
        custom_category = st.text_input("Enter custom category:")
        selected_category = custom_category if custom_category else "Other"

    combined_text = f"{title_input} [SEP] {keywords_input} [SEP] {abstract_input} [SEP] {selected_category} [SEP] {affiliations_input} [SEP] {full_text_input}"

    if st.button("Predict"):
        if not any([title_input, abstract_input, keywords_input, full_text_input, affiliations_input]):
            st.warning("Please enter paper text.")
        else:
            with st.spinner("Predicting..."):
                longformer_class = predict_class(combined_text, longformer_model, longformer_tokenizer)
                bert_class = predict_class(combined_text, bert_model, bert_tokenizer)
                if longformer_class is not None and bert_class is not None:
                    class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]

                    st.text("Longformer Predicted Class:")
                    for i, label in enumerate(class_labels):
                        if i == longformer_class:
                            st.markdown(
                                f'<div style="background-color: {class_colors[longformer_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                unsafe_allow_html=True
                            )
                        else:
                            st.text(label)

                    st.text("BERT Predicted Class:")
                    for i, label in enumerate(class_labels):
                        if i == bert_class:
                            st.markdown(
                                f'<div style="background-color: {class_colors[bert_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                unsafe_allow_html=True
                            )
                        else:
                            st.text(label)

elif option == "PDF":
    uploaded_file = st.file_uploader("Upload a PDF file", type=["pdf"])

    if uploaded_file is not None:
        with st.spinner("Processing PDF..."):
            file_path = os.path.join(uploaded_files_dir, uploaded_file.name)
            with open(file_path, "wb") as f:
                f.write(uploaded_file.getbuffer())
            st.success("File uploaded successfully.")
            st.text(f"File Path: {file_path}")
            
            file_text = extract_text_from_pdf(file_path)
            st.text("Extracted Text:")
            st.text(file_text)

            if st.button("Predict from PDF Text"):
                if not file_text.strip():
                    st.warning("Please upload a PDF with text content.")
                else:
                    with st.spinner("Predicting..."):
                        longformer_class = predict_class(file_text, longformer_model, longformer_tokenizer)
                        bert_class = predict_class(file_text, bert_model, bert_tokenizer)
                        if longformer_class is not None and bert_class is not None:
                            class_labels = ["Level 1", "Level 2", "Level 3", "Level 4"]
                            st.text("**Longformer Predicted Class:**")
                            for i, label in enumerate(class_labels):
                                if i == longformer_class:
                                    st.markdown(
                                        f'<div style="background-color: {class_colors[longformer_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                        unsafe_allow_html=True
                                    )
                                else:
                                    st.text(label)

                            st.text("**BERT Predicted Class:**")
                            for i, label in enumerate(class_labels):
                                if i == bert_class:
                                    st.markdown(
                                        f'<div style="background-color: {class_colors[bert_class]}; padding: 10px; border-radius: 5px; color: white; font-weight: bold;">{label}</div>',
                                        unsafe_allow_html=True
                                    )
                                else:
                                    st.text(label)