import streamlit as st from transformers import AutoTokenizer, AutoModelForSeq2SeqLM model_name2 = "Mhassanen/nllb-200-600M-En-Ar-finetuned" tokenizer = AutoTokenizer.from_pretrained(model_name2, src_lang="eng_Latn", tgt_lang="arz_Arab") model = AutoModelForSeq2SeqLM.from_pretrained(model_name2) def translate2(text): inputs = tokenizer(text, return_tensors="pt", padding=True) translated_tokens = model.generate(**inputs) translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True) return translated_text[0] # st.set_page_config(page_title="", page_icon="logo.png") with st.sidebar: # st.image("logo.png", width=70) # st.markdown('
', unsafe_allow_html=True) st.markdown("## About") st.markdown("---") st.markdown(''' This App powered by [Mhassanen/nllb-200-600M-En-Ar-finetuned](https://huggingface.co./Mhassanen/nllb-200-600M-En-Ar-finetuned) Language model ''') # st.markdown("---") st.title("English to Arabic Translation") text_to_translate = st.text_area("Enter text in English:") if st.button("Translate"): if text_to_translate: with st.spinner("Translating..."): translation = translate2(text_to_translate) st.success("Translation completed!") st.text_area("Translated text in Arabic:", translation, height=200) else: st.warning("Please enter some text to translate.")