Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,229 Bytes
04ff8fc ab78c01 04ff8fc 04a2751 ab78c01 04a2751 0a7f785 04a2751 ab78c01 04ff8fc 88dc9bb c94fbf5 0934b8b 5b3714e c94fbf5 04ff8fc c94fbf5 04ff8fc c94fbf5 04ff8fc aff6911 c94fbf5 62b1efd cae6714 8ddfacb cae6714 8ddfacb cae6714 c94fbf5 0ee5ec5 c94fbf5 04ff8fc c94fbf5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 |
import os
import sys
sys.path.append("./")
import torch
from torchvision import transforms
from src.transformer import Transformer2DModel
from src.pipeline import Pipeline
from src.scheduler import Scheduler
from transformers import (
CLIPTextModelWithProjection,
CLIPTokenizer,
)
from diffusers import VQModel
import gradio as gr
import spaces
device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16
model_path = "MeissonFlow/Meissonic"
model = Transformer2DModel.from_pretrained(model_path, subfolder="transformer", torch_dtype=dtype)
vq_model = VQModel.from_pretrained(model_path, subfolder="vqvae", torch_dtype=dtype)
# text_encoder = CLIPTextModelWithProjection.from_pretrained(model_path,subfolder="text_encoder", torch_dtype=dtype)
text_encoder = CLIPTextModelWithProjection.from_pretrained( #using original text enc for stable sampling
"laion/CLIP-ViT-H-14-laion2B-s32B-b79K",torch_dtype=dtype)
tokenizer = CLIPTokenizer.from_pretrained(model_path, subfolder="tokenizer", torch_dtype=dtype)
scheduler = Scheduler.from_pretrained(model_path, subfolder="scheduler")
pipe = Pipeline(vq_model, tokenizer=tokenizer, text_encoder=text_encoder, transformer=model, scheduler=scheduler)
pipe.to(device)
MAX_SEED = 2**32 - 1
MAX_IMAGE_SIZE = 1024
@spaces.GPU
def generate_image(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
if randomize_seed or seed == 0:
seed = torch.randint(0, MAX_SEED, (1,)).item()
torch.manual_seed(seed)
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
height=height,
width=width,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps
).images[0]
return image, seed
# Default negative prompt
default_negative_prompt = "worst quality, low quality, low res, blurry, distortion, watermark, logo, signature, text, jpeg artifacts, signature, sketch, duplicate, ugly, identifying mark"
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
examples = [
"Modern Architecture render with pleasing aesthetics.",
"An image of a Pikachu wearing a birthday hat and playing guitar.",
"A statue of a lion stands in front of a building.",
"A white and blue coffee mug with a picture of a man on it.",
"A metal sculpture of a deer with antlers.",
"A bronze statue of an owl with its wings spread.",
"A white table with a vase of flowers and a cup of coffee on top of it.",
"A woman stands on a dock in the fog.",
"A lion's head is shown in a grayscale image.",
"A sculpture of a Greek woman head with a headband and a head of hair."
]
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Meissonic Text-to-Image Generator")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
negative_prompt = gr.Text(
label="Negative prompt",
max_lines=1,
placeholder="Enter a negative prompt",
value=default_negative_prompt,
)
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=20.0,
step=0.1,
value=9.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=64,
)
gr.Examples(examples=examples, inputs=[prompt])
gr.on(
triggers=[run_button.click, prompt.submit],
fn=generate_image,
inputs=[
prompt,
negative_prompt,
seed,
randomize_seed,
width,
height,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
demo.launch() |