import numpy as np from collections import defaultdict from typing import List, Tuple, Callable from llmops.openai_utils.embedding import EmbeddingModel import asyncio def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float: """Computes the cosine similarity between two vectors.""" dot_product = np.dot(vector_a, vector_b) norm_a = np.linalg.norm(vector_a) norm_b = np.linalg.norm(vector_b) return dot_product / (norm_a * norm_b) class VectorDatabase: def __init__(self, embedding_model:EmbeddingModel = None): self.vectors = defaultdict(np.array) self.embedding_model = embedding_model or EmbeddingModel() def insert(self, key:str, vector:np.array)->None: """ Adding elements to the dictionary vectors, with key as key and value as vector """ self.vectors[key] = vector def search(self, query_vector:np.array,k:int, distance_measure:Callable = cosine_similarity)->List[Tuple[str, float]]: """ calculates cosine similarity between query vector and vector in the database and then sort the result and returns the top k values by slicing the list """ scores = [ (key, distance_measure(query_vector, vector)) for key, vector in self.vectors.items() ] return sorted(scores, key = lambda x:x[1], reverse = True)[:k] def search_by_text(self, query_text:str, k:int, distance_measure:Callable = cosine_similarity, return_as_text:bool = False) -> List[Tuple[str, float]]: """ This function converts the text query to embeddings and then calls the seach function """ query_vector = self.embedding_model.get_embedding(query_text) results = self.search(query_vector, k, distance_measure) return [result[0] for result in results] if return_as_text else results def retrieve_from_key(self, key: str) -> np.array: """ This function returns the value of the parameter key in the vector dictionary """ return self.vectors.get(key, None) async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase": """ create a database from a list of texts. text is key where as embedding is the mapping """ embeddings = await self.embedding_model.async_get_embeddings(list_of_text) for text, embedding in zip(list_of_text, embeddings): self.insert(text, np.array(embedding)) return self