RAQA-from-Scratch / llmops /vectordatabase.py
Megatron17's picture
Upload 20 files
5623f53
raw
history blame
2.5 kB
import numpy as np
from collections import defaultdict
from typing import List, Tuple, Callable
from llmops.openai_utils.embedding import EmbeddingModel
import asyncio
def cosine_similarity(vector_a: np.array, vector_b: np.array) -> float:
"""Computes the cosine similarity between two vectors."""
dot_product = np.dot(vector_a, vector_b)
norm_a = np.linalg.norm(vector_a)
norm_b = np.linalg.norm(vector_b)
return dot_product / (norm_a * norm_b)
class VectorDatabase:
def __init__(self, embedding_model:EmbeddingModel = None):
self.vectors = defaultdict(np.array)
self.embedding_model = embedding_model or EmbeddingModel()
def insert(self, key:str, vector:np.array)->None:
"""
Adding elements to the dictionary vectors, with key as key and value as vector
"""
self.vectors[key] = vector
def search(self, query_vector:np.array,k:int, distance_measure:Callable = cosine_similarity)->List[Tuple[str, float]]:
"""
calculates cosine similarity between query vector and vector in the database and then sort the result and
returns the top k values by slicing the list
"""
scores = [
(key, distance_measure(query_vector, vector)) for key, vector in self.vectors.items()
]
return sorted(scores, key = lambda x:x[1], reverse = True)[:k]
def search_by_text(self, query_text:str, k:int, distance_measure:Callable = cosine_similarity, return_as_text:bool = False) -> List[Tuple[str, float]]:
"""
This function converts the text query to embeddings and then calls the seach function
"""
query_vector = self.embedding_model.get_embedding(query_text)
results = self.search(query_vector, k, distance_measure)
return [result[0] for result in results] if return_as_text else results
def retrieve_from_key(self, key: str) -> np.array:
"""
This function returns the value of the parameter key in the vector dictionary
"""
return self.vectors.get(key, None)
async def abuild_from_list(self, list_of_text: List[str]) -> "VectorDatabase":
"""
create a database from a list of texts. text is key where as embedding is the mapping
"""
embeddings = await self.embedding_model.async_get_embeddings(list_of_text)
for text, embedding in zip(list_of_text, embeddings):
self.insert(text, np.array(embedding))
return self