Spaces:
Sleeping
Sleeping
File size: 2,733 Bytes
5623f53 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 |
from dotenv import load_dotenv
from openai.embeddings_utils import get_embeddings, aget_embeddings, get_embedding, aget_embedding
import openai
from typing import List
import os
import asyncio
class EmbeddingModel:
"""
This class contains functionalities to generate embeddings from the
list of texts or text asynchronously or in sync.
"""
def __init__(self, embeddings_model_name:str = "text-embedding-ada-002"):
"""
Loads the OpenAI Api key and sets the embedding model
"""
load_dotenv()
self.openai_api_key = os.getenv("OPENAI_API_KEY")
if self.openai_api_key is None:
raise ValueError("OPENAI_API_KEY environment variables is not set. Please set it to your openAI API key")
openai.api_key = self.openai_api_key
self.embeddings_model_name = embeddings_model_name
async def async_get_embeddings(self, list_of_text:List[str])->List[List[float]]:
"""
This function takes in a list of strings and uses openai api
aget_embeddings to get the list of embeddings back. The process is asynchronous in nature
"""
return await aget_embeddings(
list_of_text = list_of_text, engine = self.embeddings_model_name
)
async def async_get_embedding(self, text: str) -> List[float]:
"""
This function takes in a string and uses openai api
aget_embedding to get the list of embeddings back. The process is asynchronous in nature
"""
return await aget_embedding(text=text, engine=self.embeddings_model_name)
def get_embeddings(self, list_of_text: List[str]) -> List[List[float]]:
"""
This function takes in a list of strings and uses openai api
get_embeddings to get the list of embeddings back. The process is synchronous in nature
"""
return get_embeddings(
list_of_text=list_of_text, engine=self.embeddings_model_name
)
def get_embedding(self, text: str) -> List[float]:
"""
This function takes in a string and uses openai api
get_embedding to get the list of embeddings back. The process is synchronous in nature
"""
return get_embedding(text=text, engine=self.embeddings_model_name)
if __name__ == "__main__":
embedding_model = EmbeddingModel()
print(embedding_model.get_embedding("Hello, world!"))
print(embedding_model.get_embeddings(["Hello, world!", "Goodbye, world!"]))
print(asyncio.run(embedding_model.async_get_embedding("Hello, world!")))
print(
asyncio.run(
embedding_model.async_get_embeddings(["Hello, world!", "Goodbye, world!"])
)
) |