Spaces:
Running
on
Zero
Running
on
Zero
MaziyarPanahi
commited on
Commit
·
b6fa3b6
1
Parent(s):
f4ce971
update app
Browse files
app.py
CHANGED
@@ -1,82 +1,91 @@
|
|
1 |
-
import
|
|
|
2 |
|
|
|
|
|
|
|
3 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
4 |
-
from transformers import
|
5 |
|
6 |
-
from threading import Thread
|
7 |
-
import re
|
8 |
-
import time
|
9 |
-
from PIL import Image
|
10 |
-
import torch
|
11 |
import spaces
|
12 |
-
import requests
|
13 |
-
|
14 |
-
CSS ="""
|
15 |
-
#component-3 {
|
16 |
-
height: 500px !important;
|
17 |
-
}"""
|
18 |
|
19 |
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
|
20 |
|
21 |
processor = AutoProcessor.from_pretrained(model_id)
|
22 |
|
23 |
model = LlavaForConditionalGeneration.from_pretrained(
|
24 |
-
model_id,
|
25 |
-
torch_dtype=torch.float16,
|
26 |
-
low_cpu_mem_usage=True,
|
27 |
)
|
28 |
|
29 |
model.to("cuda:0")
|
30 |
model.generation_config.eos_token_id = 128009
|
31 |
|
|
|
32 |
@spaces.GPU
|
33 |
def bot_streaming(message, history):
|
34 |
print(message)
|
35 |
if message["files"]:
|
36 |
-
|
|
|
|
|
|
|
|
|
37 |
else:
|
38 |
# if there's no image uploaded for this turn, look for images in the past turns
|
39 |
# kept inside tuples, take the last one
|
40 |
for hist in history:
|
41 |
-
|
42 |
-
|
43 |
try:
|
44 |
if image is None:
|
45 |
# Handle the case where image is None
|
46 |
-
gr.Error("You need to upload an image for LLaVA to work.")
|
47 |
except NameError:
|
48 |
# Handle the case where 'image' is not defined at all
|
49 |
-
gr.Error("You need to upload an image for LLaVA to work.")
|
50 |
-
|
51 |
-
prompt=f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
52 |
-
print(f"prompt: {prompt}")
|
53 |
image = Image.open(image)
|
54 |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
55 |
-
|
56 |
-
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": True})
|
57 |
-
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
58 |
-
generated_text = ""
|
59 |
|
60 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
61 |
thread.start()
|
62 |
-
|
63 |
-
text_prompt =f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
64 |
-
print(f"text_prompt: {text_prompt}")
|
65 |
|
66 |
buffer = ""
|
|
|
67 |
for new_text in streamer:
|
68 |
-
|
|
|
|
|
69 |
buffer += new_text
|
70 |
-
|
71 |
-
generated_text_without_prompt = buffer[len(text_prompt):]
|
72 |
-
|
|
|
|
|
|
|
73 |
yield generated_text_without_prompt
|
74 |
|
75 |
|
76 |
-
demo = gr.ChatInterface(
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
demo.queue(api_open=False)
|
82 |
-
demo.launch(show_api=False, share=False)
|
|
|
1 |
+
import time
|
2 |
+
from threading import Thread
|
3 |
|
4 |
+
import gradio as gr
|
5 |
+
import torch
|
6 |
+
from PIL import Image
|
7 |
from transformers import AutoProcessor, LlavaForConditionalGeneration
|
8 |
+
from transformers import TextIteratorStreamer
|
9 |
|
|
|
|
|
|
|
|
|
|
|
10 |
import spaces
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
model_id = "xtuner/llava-llama-3-8b-v1_1-transformers"
|
13 |
|
14 |
processor = AutoProcessor.from_pretrained(model_id)
|
15 |
|
16 |
model = LlavaForConditionalGeneration.from_pretrained(
|
17 |
+
model_id,
|
18 |
+
torch_dtype=torch.float16,
|
19 |
+
low_cpu_mem_usage=True,
|
20 |
)
|
21 |
|
22 |
model.to("cuda:0")
|
23 |
model.generation_config.eos_token_id = 128009
|
24 |
|
25 |
+
|
26 |
@spaces.GPU
|
27 |
def bot_streaming(message, history):
|
28 |
print(message)
|
29 |
if message["files"]:
|
30 |
+
# message["files"][-1] is a Dict or just a string
|
31 |
+
if type(message["files"][-1]) == dict:
|
32 |
+
image = message["files"][-1]["path"]
|
33 |
+
else:
|
34 |
+
image = message["files"][-1]
|
35 |
else:
|
36 |
# if there's no image uploaded for this turn, look for images in the past turns
|
37 |
# kept inside tuples, take the last one
|
38 |
for hist in history:
|
39 |
+
if type(hist[0]) == tuple:
|
40 |
+
image = hist[0][0]
|
41 |
try:
|
42 |
if image is None:
|
43 |
# Handle the case where image is None
|
44 |
+
gr.Error("You need to upload an image for LLaVA to work.")
|
45 |
except NameError:
|
46 |
# Handle the case where 'image' is not defined at all
|
47 |
+
gr.Error("You need to upload an image for LLaVA to work.")
|
48 |
+
|
49 |
+
prompt = f"<|start_header_id|>user<|end_header_id|>\n\n<image>\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
50 |
+
# print(f"prompt: {prompt}")
|
51 |
image = Image.open(image)
|
52 |
inputs = processor(prompt, image, return_tensors='pt').to(0, torch.float16)
|
53 |
+
|
54 |
+
streamer = TextIteratorStreamer(processor, **{"skip_special_tokens": False, "skip_prompt": True})
|
55 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024, do_sample=False)
|
|
|
56 |
|
57 |
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
58 |
thread.start()
|
59 |
+
|
60 |
+
text_prompt = f"<|start_header_id|>user<|end_header_id|>\n\n{message['text']}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
|
61 |
+
# print(f"text_prompt: {text_prompt}")
|
62 |
|
63 |
buffer = ""
|
64 |
+
time.sleep(0.5)
|
65 |
for new_text in streamer:
|
66 |
+
# find <|eot_id|> and remove it from the new_text
|
67 |
+
if "<|eot_id|>" in new_text:
|
68 |
+
new_text = new_text.split("<|eot_id|>")[0]
|
69 |
buffer += new_text
|
70 |
+
|
71 |
+
# generated_text_without_prompt = buffer[len(text_prompt):]
|
72 |
+
generated_text_without_prompt = buffer
|
73 |
+
# print(generated_text_without_prompt)
|
74 |
+
time.sleep(0.06)
|
75 |
+
# print(f"new_text: {generated_text_without_prompt}")
|
76 |
yield generated_text_without_prompt
|
77 |
|
78 |
|
79 |
+
demo = gr.ChatInterface(
|
80 |
+
fn=bot_streaming,
|
81 |
+
fill_height=False,
|
82 |
+
title="LLaVA Llama-3-8B",
|
83 |
+
examples=[{"text": "What is on the flower?", "files": ["./bee.jpg"]},
|
84 |
+
{"text": "How to make this pastry?", "files": ["./baklava.png"]}],
|
85 |
+
description="Try [LLaVA Llama-3-8B](https://huggingface.co/xtuner/llava-llama-3-8b-v1_1-transformers). Upload an image and start chatting about it, or simply try one of the examples below. If you don't upload an image, you will receive an error.",
|
86 |
+
stop_btn="Stop Generation",
|
87 |
+
multimodal=True
|
88 |
+
)
|
89 |
|
90 |
demo.queue(api_open=False)
|
91 |
+
demo.launch(show_api=False, share=False)
|